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Abstract

In many cases, ordinal data, for example rating objects on a 1,2,3,... scale, is

observed only for those objects that have been chosen from a set of discrete alternatives,

with no ratings for unchosen objects. An example is customer ratings of goods sold by

online retailers. The joint modelling of choice and rating is made difficult by the missing

ratings for unchosen alternatives. A method of jointly modelling choice and rating data

termed a choice-ordered logit (COL) model is presented. Two types of COL model

are defined: two-step, which places a positive probability on the chosen alternative not

having the highest rating, and one-step, where the highest rated alternative is always

chosen. Three case studies exemplifying the use of COL models are given. One uses

simulated data and two use data from discrete choice experiments. It is shown that

COL models can produce robust estimates. Two-step models provided a better fit than

one-step, and most participants seemed to use two-step decision-making. However, a

sizeable minority used one-step decision-making in one case study. It is argued that

COL models have benefits over standard approaches, in particular adding information

on strength-of-preference to discrete choices.
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1 Introduction

There are many sources of data on individuals choosing one alternative from a set of two

or more. There are also many occasions in which individuals rate something that has been

selected on an ordinal scale. Often rating data is observed only after the decision maker has

made an initial discrete choice, and ratings for the alternatives not chosen are not observed.

An example of this arises in the case of retail websites such as Amazon, where ratings of

between one and five stars are only observed for the goods consumers chose to purchase.

Other non-retail websites allow ratings of goods purchased elsewhere, such as IMDB for films

or Yelp for restaurants and other services. Here, again, cinema goers must first choose what

film they want to see, and diners must choose which restaurant to eat at, and their ratings

for non-chosen alternatives are not observed. Another example is that of extending stated

choice (SC) surveys otherwise known as discrete choice experiments (DCEs), so participants

additionally rate their preferred option after each choice.

When decision-makers only rate objects that were previously chosen, the full decision-

making process is a joint one. Thus ordered logit (OL) models, which use only rating data,

do not fully model the decision-making environment, nor do they make use of the fact that

individuals clearly like the objects they are rating enough to select them over others. Likewise,

models of discrete choice also neglect the information on individuals’ strength of preference

provided by the ratings.

This paper introduces a framework for jointly modelling both discrete choices and ratings,

which we refer to as choice-ordered logit (COL). It thus captures both components of the

decision-making process in a single model, which it is hoped will aid a greater understanding

of the whole decision-making environment, both theoretically and empirically.

This work draws on an extensive literature on modelling both discrete choices and ordered

data using both revealed and stated preferences (see Train (2009) and Hess and Daly (2014)

for a partial overview). However, we are not aware of any previous studies which combine

choices and ratings in the way proposed here. For example, while some studies have examined
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how and why individuals leave online ratings (e.g. Moe & Schweidel, 2012) or how consumers

react to them (e.g. Sun, 2012), these studies do not explicitly consider the prior discrete

choice.

There are several studies in which a DCE is expanded with a Likert scale question, for

example Regier, Watson, Burnett, and Ungar (2014) in health, Beck, Fifer, and Rose (2016)

in transport, and Mattmann, Logar, and Brouwer (2019) in environmental economics. Yet

the Likert scales in these cases measure the uncertainty respondents have over their decisions.

Thus they measure something fundamentally different than the strength of preferences for

the choice objects, meaning approaches to jointly modelling this data are also conceptually

different to the approach detailed here. Here, it is assumed that both discrete choices and

ratings are reflective of intrinsic preferences for choice objects.

Gutknecht, Schaarschmidt, Danner, Blome, and Augustin (2018) and Wijnen et al. (2015)

conduct DCEs while also measuring how important each attribute was using Likert scales.

However, in neither study was the data from both exercises modelled jointly, instead the

results of separate models were compared.

Some similarities to the current approach are seen in Rose, Beck, and Hensher (2015),

Beck, Rose, and Hensher (2013) and Hensher and Rose (2012). In the survey in those

studies, DCE participants were asked whether each item was acceptable or not, which could

be thought of as a binary rating which reflects their preferences for choice objects. However,

in that case the additional question was asked for each choice object, whereas the focus here

is on situations in which only ratings for the chosen object are observed. The additional

data was also used to estimate participants’ consideration sets, whereas this heuristic is not

modelled here.

The remainder of this paper proceeds as follows: Section 2 gives the mathematical frame-

work for the model approach. Section 3 then gives three case studies of applying joint

choice-ordered logit models. The first uses simulated data, and the other two use data from

discrete choice experiment (DCE) surveys. Section 4 provides a general discussion of the
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results from each case study, and section 5 concludes.

2 Theory

Let individual n choose from a set of J items with |J | ≥ 2, then rate the selected item on

an integer ordinal scale from 1 to R ≥ 3, with one being worst and R being best. Assume

the utility to n from choosing item j ∈ J in task t is UC
jnt = Vjnt + εjnt where εjnt follows

an extreme value distribution across observations and alternatives. Let Vjnt = βnxjnt where

xjnt is a vector describing the features of option j as faced by individual n in task t, and

βn is a vector describing n’s preferences/sensitivities for those features. Assume the utility

function when rating is UR
jnt = ζVjnt + ηjnt where ηjnt follows an extreme value distribution

and ζ is an (optional) scale parameter.

With a type I extreme value distribution for the error terms εjnt, we obtain a multinomial

logit (MNL) model, such that the probability of individual n choosing option i in task t is

given by:

PC
nt (i | βn, Snt) =

eVint∑
j∈S e

Vjnt
, (1)

where S is the universal choice set, i.e. S = 〈1, . . . , J〉.

The probability of item i being rated r is given by:

PR
int (r | βn, ζ) = P (ζVint < τr)− P (ζVint < τr−1)

=
1

1 + eζVint−τr
− 1

1 + eζVint−τr−1
(2)

where τ0, τ1, . . . , τR are a series of thresholds defining the utility thresholds at which a given

rating is observed, with τr−1 < τr, τ0 = −∞ and τR =∞. This probability is of the ordered

logit (OL) type.

COL models may follow a one or two-step decision process. We will now look at these

4



two possibilities in turn, where we define int to be the alternative chosen by n in task t, and

let rateint be the rating given to that alternative.

With a two-step process, choices and ratings are separate, so that there is a possibility

that individuals choose an option that does not have the highest rating. The joint probability

of choosing item int, i.e. choicent = int and rating it r, i.e. rateint = rint is then:

Pnt (int & rint | β, ζ) = PC
nt (int | βn, Snt) · PR

intnt (rint | βn, ζ) . (3)

With a one-step decision process, individuals always choose the item with (weakly) the

highest rating. We have previously introduced S as the universal choice set. Let us now

define Su,nt as the set of unchosen alternatives for individual n in task t, i.e. Su,nt = S \ int,

and U (Su,nt, int) = S.

Let S`mu,nt denote the `th (unique) subset of Su,nt containing exactly m elements, with

m = 1, . . . , J −1 and with ` = 1, 2, . . . up to J−1Cm which is the number of ways of selecting

m objects from J − 1. Note that this notation implies that S10
u,nt is an empty subset, and as

J−1C0 = 1 ∀ J it is unique. The probability of choosing int, i.e. choicent = int and rating it

r, i.e. rateint = rint is then:

Pnt (int & rint | βn, ζ) =
J−1∑
m=0

JCm∑
`=1

[ ∏
k∈S`mu,nt∪{int}

PR
knt (rint | βn, ζ)


·

 ∏
k∈{S`mu,nt∪{int}}c

rint−1∑
q=1

PR
knt (q | βn, ζ)




· PC
nt

(
int | βn,S`mu,nt ∪ {int}

) ]
. (4)

The first bracketed term represents the probability that int and a given subset of m−1 other

items are rated rint , and the second term represents the probability that all other objects are

rated strictly less than rint . The final term is the probability that int is chosen from the m

objects rated exactly rint . Only those combinations where no alternatives are rated higher
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than rint are included, as, in contrast to a two-step model, the probability of choosing int

would be zero if any other alternative obtained a higher ranking.

Thus, for example, if the individual is choosing between two objects, say 1 and 2, the

probability of choosing 1 and rating it as 3 out of 5 is:

Pnt (1 & 3 | βn, ζ) =PR
1nt (3 | βn, ζ)

·
( 2∑
q=1

PR
2nt (q | βn, ζ)

+ PR
2nt (3 | βn, ζ)PC

nt (1 | βn,S12)
)
. (5)

The first line relates to the probability of the chosen alternative (i.e. option 1) being rated

3. In the second line, we cover all cases where the other alternative is rated strictly less than

3, meaning that the probability of choosing alternative 1 is equal to 1 as its rating is strictly

greater than that for any others. The third line, covers the case where both alternatives

are rated as 3, meaning that the discrete choice over two alternatives comes into play, with

S12 = {1, 2}. Any cases where alternative 2 is rated more than 3 do not contribute to the

probability of the observed outcome, given that alternative 1 could never be chosen in a

one-step model.

With three alternatives, and again assuming that alternative 1 is chosen and given a
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rating of 3, we simply have more combinations of cases, namely:

Pnt (1 & 3 | βn, ζ) =PR1nt (3 | βn, ζ)

·

[ 2∑
q=1

PR2nt (q | βn, ζ)

 ·
 r2∑
q=1

PR3nt (q | βn, ζ)


+ PR2nt (3 | βn, ζ) ·

 2∑
q=1

PR3nt (q | βn, ζ)

 · PCnt (1 | βn,S12)

+

 2∑
q=1

PR2nt (q | βn, ζ)

 · PR3nt (3 | βn, ζ) · PCnt (1 | βn,S13)

+ PR2nt (3 | βn, ζ) · PR3nt (3 | βn, ζ) · PCnt (1 | βn,S123)

]
.

Here the top line again represents the probability that alternative 1 is rated 3. The next line

represents the probability that alternative one “wins” outright in the ratings, i.e. alternatives

2 and 3 are rated strictly less than 3. The third line represents the probability of a two-way

“tie”, i.e. alternative 2 is also rated 3, and alternative 1 is chosen from the two equal highest

ranked alternatives. Likewise, the fourth line represents the probability of a two-way tie

between alternatives 1 and 3. The final line gives the probability of all three alternatives

being ranked 3, and alternative 1 being chosen from among the three.

3 Case studies

3.1 Case study 1

3.1.1 Data

The aim of this case study was to see whether COL models were capable of recovering

parameters when the underlying data generating process (DGP) was known. It uses synthetic

data which simulates choice situations in which individuals are presented with a binary choice

between items characterised by two attributes, then rating their selected item on a scale from
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1 to 5, with 1 being worst and 5 being best. The choice situations that simulated participants

responded to were created using NGene1 to generate a Bayesian D-efficient DCE design with

five blocks of 10 questions each. Dominated choices were ruled out and the priors for β1 and

β2 were set to 10−4 and −10−4, respectively.

Individual n’s utility for choosing item i in task t was defined as

UC
int = β1xint,1 + β2xint,2 + εint (6)

where xint,k ∈ {1, 2, 3, 4} gives the level of attribute k ∈ {1, 2} for object i and βk represents

n’s choice preferences for attribute k. For all individuals β1 was set to 0.9 and β2 was set to

-1.1. Thus attribute 1 represents a desirable feature (e.g. quality) and attribute 2 represents

an undesirable feature (e.g. price). The error term εint followed a type I extreme value

distribution with a variance of π2/6, implying that we obtain an MNL model

Individual n’s preferences for rating attribute i in task t are similarly given by

UR
int = ζ (β1xint,1 − β2xint,2) + ηint (7)

with i being rated r if τr−1 < UR
int < τr. For all individuals, the thresholds were set to

τ1 = −3, τ2 = −1, τ3 = 1, τ4 = 3. In a given simulation, the same value of ζ was chosen

for each person, but different values were used in different simulations. Six datasets were

generated, each with 500 simulated responses. Three datasets had a two-step DGP with

values of 0.5, 1 and 2 chosen for ζ. The other three datasets had a one-step DGP, with again

values of 0.5, 1 and 2 chosen for ζ.

In addition, a series of further datasets were derived by mixing between datasets with

the same scale parameter but different decision steps to mimic the case where there is het-

erogeneity in individuals’ decision processes. The mixed datasets also had had 500 synthetic

respondents with a fraction drawn from a two-step and the remainder drawn from the equiva-

1www.choice-metrics.com
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lent one-step database. For each pair of two-step and one-step datasets, between 1% and 99%

of respondents were randomly drawn from the two-step datasets, in steps of one percentage

point.

3.1.2 Analysis

For each dataset, the following models were estimated:-

(i) MNL;

(ii) OL;

(iii) Two-step COL without scale parameter;

(iv) One-step COL without scale parameter;

(v) Two-step COL with scale parameter;

(vi) One-step COL with scale parameter.

For the mixed datasets, two-step and one-step models were estimated with and without

a scale parameter. The results of two- and one-step estimation were then used in a model

averaging process (Hancock & Hess, 2020) to estimate the fraction of individuals using a

given decision process. (This can be thought of as estimating a finite-mixture model with

heterogeneity in the decision-making process, with the parameters within a given decision-

making class fixed at the values from models estimated without mixing.) All estimation was

performed using the Apollo choice modelling package for R (Hess & Palma, 2019).

3.1.3 Results

Table 1 gives the results of model estimation. It can be seen that in most cases COL models

return the true taste parameters of the synthetic respondents with a reasonable degree of

accuracy. With a two-step DGP, MNL and OL performed well, however with a one-step
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DGP, MNL and OL often performed worse than a one-step COL model, especially when the

true underlying scale parameter differed from 1.

Adding a scale parameter to COL models often improved accuracy. Notable exceptions are

one-step COL models with a scale parameter when the DGP was two-step with a non-unity

scale parameter. When the true scale parameter was 2, the one-step COL model estimated

very small taste parameters (β̂1 = 0.02, β̂2 = −0.03) and a large scale parameter (ζ̂ = 75.1).

This may be interpreted as the best fit resulting from the model only explaining the rating

data, while the choice data is modelled as being largely random. In general when the decision

process in the model and DGP were mismatched, two-step COL models performed better

with a one-step DGP than one-step models with a two-step DGP.

Figure 2 illustrates the BIC of the estimated models, including for MNL and OL models

combined. Although differences may be small, a correctly specified COL model provided

a better fit than combined MNL and OL in every case. Sometimes even misspecified COL

models performed better, for example with a one-step DGP with scale parameter 1, combined

MNL and OL provided the worst fit of all models, although again differences were sometimes

small.

Figure 2 summarises the results of model averaging. In general it was possible to recover

the fractions of one-step and two-step decision-makers in the population, as long as the split

was not too one-sided. Having a scale parameter in the estimated models generally improved

accuracy in the cases where the true underlying parameter was 0.5 or 2.

3.1.4 Discussion

This simulation exercise has acted as a proof-of-concept for COL models. It has demonstrated

that COL models are capable of accurately estimating the parameters of a known data-

generating process. This means that they can be applied in situations with an unknown

data-generating process with some confidence that the resulting estimated model parameters

give insight into it.
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Figure 1: Bayesian information criteria for case study 1 models

The results of comparing combined MNL and OL BIC to COL models reveals that in

every case there was a COL model that provided a more parsimonious fit. In some cases, it

may be that a researcher is only interested in modelling either choices or ratings. However,

the simulation exercise has shown that there may be an advantage to using COL models even

in these cases. In particular when the true DGP was one-step, one-step COL models usually

provided more accurate parameter estimates than either MNL or OL models. Thus if the

researcher believes individuals are using a one-step decision process, a COL model could be

a better choice than modelling only choices or only ratings. This is more likely to be the case

with a one-step decision-making process as with it, MNL and OL are misspecified in a way

that they are not with a two-step decision-making process.

It is not certain with real choices and rating how individuals will act, and in particular

whether their decision-making will be one-step or two-step. The decision-making process

may also vary from situation to situation. Hence it is useful to use simulation to compare

cases when it is known whether the model is correctly specified or not. In many cases a
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misspecified COL model still produced reasonably accurate model estimates, particularly a

two-step model with a one-step DGP with a scale parameter of 1. However, one-step models

could produce imprecise parameter estimates if misspecified, including a case where very

little variation in choices was explained by the model.

There may be heterogeneity amongst people in whether a two-step or a one-step decision-

making process is used. Hence it is encouraging that it was possible when the fraction of one

type of decision-makers not too large to accurately recover the fraction of individuals using a

given process using model averaging. The next two case studies use real data, and in each we

investigate what fraction of individuals use two/one-step decision-making. Demonstrating

that model averaging can produce accurate estimates in synthesised data where the true

underlying fractions are known is important to give confidence in the results with real data.

3.2 Case study 2 - discrete choice experiment on decision-making

of alternative and augmentative communication professionals

3.2.1 Data

Alternative and augmentative communication (AAC) describes a large number of techniques

which allow people with no natural speech to communicate. AAC systems vary a lot. They

can be low-tech, for example boards with letters people can point to, or high tech, for example

the speech-synthesising system used by the late Stephen Hawking. People who use AAC have

a wide variety of conditions, including cerebral palsy, intellectual/developmental delay and

autism spectrum conditions, and even within diagnoses, people’s needs and abilities vary

significantly (Murray & Goldbart, 2009). This means the features of an AAC system must

be carefully matched to the individual needs of a child, otherwise the child may abandon

using it (Moorcroft, Scarinci, & Meyer, 2019).

The data for this case study is taken from a DCE examining UK-based AAC professionals’

decision-making when choosing AAC systems for children (Webb, Lynch, et al., 2019). In the
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survey, participants were shown a short vignette describing a hypothetical child described by

four attributes: their language skills, their determination, their communication ability with

AAC, and their expected future trajectory, with two, three, three and three levels respectively.

They then had to choose between three hypothetical AAC systems for the child. The AAC

systems were characterised by five attributes: type and size of pre-provided vocabulary (three

levels each), type of vocabulary organisation (four levels), type of graphic symbols used (four

levels) and how consistent the layout of the interface is (three levels). After making their

choice, they were asked to rate how good a fit their preferred option was for the child, i.e.

how well the features of the system suited the child’s needs and circumstances, on a scale

from 1 (poor fit) to 7 (good fit). An example choice task is shown in figure 3. Note that the

attribute names used above are somewhat simplified for a non-AAC audience; the full list

of attributes and levels shown to participants is provided in the appendix for the interested

reader.

Experts on AAC removed 18 out of a possible 54 child vignettes and 158 out of a possible

432 AAC systems as being unrealistic. A D-efficient design was generated for AAC systems

using NGene with five blocks of 12 choice tasks each. Respondents were randomly allocated

to a block as well as being independently randomly allocated three child vignettes, answering

four choice tasks for each vignette. Responses were collected online between 20 October 2017

and 4 March 2018, with 155 participants completing the DCE.

3.2.2 Analysis

In Webb, Lynch, et al. (2019) a model was estimated with interactions between AAC systems

and child attributes, as the study sought to investigate how participants’ preferences changed

when choosing for children with different characteristics. However, in the current study for

simplicity no interactions were included in models, and coefficients were only included for

AAC systems. The same six models as in case study 1 were estimated. For each model,

t-tests were used to judge if coefficients were different from 0, with significance judged at the

15



Figure 3: Example choice task from case study 2 discrete choice task
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5% level after adjustment for multiple testing using Holm’s sequential Bonferroni correction

(Holm, 1979). Model averaging was performed with pairs of two- and one-step models with

and without a scale parameter. From the results, posterior probabilities of participants

belonging to the two-step and one-step decision-making classes were estimated (Hess, 2014).

All estimation was performed using the Apollo choice modelling package for R (Hess & Palma,

2019).

3.2.3 Results

The results of model estimation are given in Table 2. With the MNL model, 10 out of 12 taste

coefficients were significant, more than in the OL model, which had only four. This could

suggest that with information on the characteristics of the chosen option only, it is difficult

to explain the rating of that option on the basis of its attributes. This is a key motivation

for the use of the COL models. With COL models, a similar number of coefficients (8-9)

were significant as with MNL for both two-step models and the one-step model with no scale

parameter. Only six parameters were significant in the one-step COL with a scale parameter.

Some parameters had the opposite sign in the MNL and OL models, but in every case

the coefficients were insignificant in the OL model, and in two cases in the MNL model as

well. Otherwise, coefficients were of similar magnitudes. Coefficients in the two-step COL

models and the one-step model with no scale parameter were similar in magnitude to the

MNL model, apart from two parameters. For those parameters (graphics levels 2 and 4),

some sign reversals were seen, but neither parameter was significant in any of the models.

The one-step COL model with a scale parameter had low preference coefficients and a large

scale parameter (10.9).

Figure 4 compares models’ BIC, including MNL and OL combined. All COL models have

a better fit than the combined MNL and OL models, with the two-step COL model without

a scale parameter giving the best fit.

Model averaging showed that most participants used a two-step decision-making process,

17



Table 2: Case study 2 model results

MNL OL 2-step 1-step 2-step 1-step
no scale no scale scale scale

Vocab sets L2 0.247* 0.185 0.216* 0.256* 0.219* 0.0284
(0.079) (0.124) (0.073) (0.079) (0.074) (0.011)

Vocab sets L3 0.553* 0.484* 0.524* 0.617* 0.532* 0.0660*
(0.086) (0.147) (0.079) (0.094) (0.081) (0.019)

Vocab size L2 0.467* 0.147 0.355* 0.436* 0.363* 0.0450*
(0.081) (0.135) (0.072) (0.08) (0.077) (0.015)

Vocab size L3 0.519* 0.575* 0.545* 0.629* 0.550* 0.0692*
(0.092) (0.158) (0.084) (0.103) (0.085) (0.02)

Vocab organisation L2 0.296* -0.207 0.136 0.172 0.144 0.0158
(0.106) (0.133) (0.083) (0.101) (0.085) (0.011)

Vocab organisation L3 0.256* -0.0116 0.189 0.271* 0.195 0.0265
(0.103) (0.142) (0.086) (0.106) (0.087) (0.013)

Vocab organisation L4 0.404* -0.0288 0.268* 0.411* 0.277* 0.0411*
(0.094) (0.142) (0.083) (0.101) (0.084) (0.015)

Graphics L2 0.00453 -0.0504 -0.0226 -0.0103 -0.0201 -0.00311
(0.095) (0.139) (0.079) (0.093) (0.081) (0.009)

Graphics L3 -0.304* -0.269 -0.300* -0.361* -0.304* -0.0381
(0.103) (0.152) (0.091) (0.107) (0.091) (0.015)

Graphics L4 0.0141 -0.175 -0.0568 -0.0417 -0.0532 -0.00717
(0.092) (0.137) (0.077) (0.094) (0.08) (0.01)

Layout consistency L2 0.594* 0.722* 0.628* 0.727* 0.635* 0.0788*
(0.079) (0.143) (0.074) (0.085) (0.076) (0.022)

Layout consistency L3 0.938* 1.01* 0.956* 1.10* 0.968* 0.118*
(0.086) (0.136) (0.073) (0.091) (0.077) (0.032)

Scale parameter 0.95 10.9*
(0.114) (2.957)

τ1 -3.47 -3.15 0.194 -3.19 0.388
(0.451) (0.441) (0.23) (0.449) (0.252)

τ2 -1.76 -1.44 1 -1.48 1.23
(0.26) (0.233) (0.185) (0.249) (0.197)

τ3 -0.664 -0.348 1.63 -0.39 1.87
(0.222) (0.178) (0.171) (0.197) (0.186)

τ4 0.674 0.987 2.55 0.941 2.82
(0.222) (0.166) (0.17) (0.194) (0.189)

τ5 2.23 2.54 3.84 2.49 4.12
(0.231) (0.169) (0.178) (0.206) (0.198)

τ6 4.59 4.9 6.09 4.85 6.37
(0.306) (0.249) (0.25) (0.288) (0.267)

BIC 3717.2 5894.9 9540.4 9596.9 9547.7 9577.3

Note. Standard errors in parentheses; * = significant at 5% level after adjustment
using Holm’s sequential Bonferonni correction

18



95
00

95
50

96
00

96
50

B
ay

es
ia

n 
in

fo
rm

at
io

n 
cr

ite
rio

n

MNL & OL
combined

2−step
no scale

1−step
no scale

2−step
scale

1−step
scale

Figure 4: Bayesian information criteria for case study 2 models

19



with the share if two-step decision-makers being 80.5% and 77.0% respectively for models with

and without a scale parameter. Figure 5 gives density plots for the posterior probabilities of

decision-making classes. Relatively little heterogeneity is seen, with most of the probability

density being clustered around 80% of two-step decision-makers.

3.2.4 Discussion

The dataset for this case study has a relatively low number of respondents, with 155 compared

to a median of 401 participants in DCEs in healthcare published from 2013-2017 (Soekhai,

de Bekker-Grob, Ellis, & Vass, 2019). However, such a low number was inevitable, as in

many other cases, as there are few members of the target population. (It is estimated that

there are only around 800 AAC professionals working with children in the UK.2) Thus this

case study is useful in demonstrating that COL models are feasible when collecting a large

amount of data is impractical.

It is encouraging that, apart from the one-step model with a scale parameter, most

coefficients are statistically significant, and this also represents a large improvement over the

standard OL model. It is also encouraging that, as measured by BIC, COL models provided

a better fit than MNL and OL combined.

In this case, it should be expected that participants would use a two-step decision-making

process, as there are good reasons to allow a positive probability of participants choosing

one AAC system, yet rating it lower than they would have one of the unchosen systems.

For example, they may choose a system that is less suitable to child’s current needs than

alternatives, but which is better for the child to grow into. It could be that respondents were

reluctant to choose some AAC systems due to a high inferred cost, which would not impact

on how good a fit they considered a system for a child (although in practice previous research

has indicated that cost is relatively unimportant in AAC professionals’ decision making in

the UK (Webb, Meads, et al., 2019)).

2Personal correspondence with Communication Matters, a UK-wide AAC charity.
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Figure 5: Model averaging posterior decision-making class allocation for case study 2
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The prior expectation that participants would use a two-step decision-making process

was borne out by the empirical results, with two-step COL models having lower BIC and the

model averaging process estimating around four fifths of participants to be in the two-step

decision-making class. A large majority of two-step decision-makers also explains the poor

performance of the one-step COL model with a scale parameter. The results were similar

to the analogous models in case study 1 when estimated on a two-step DCP with a true

scale parameter of 2 (see Table 1). The misspecification of the model results in low taste

parameters and a high scale parameter, indicating that very little variation in choices is

explained.

There is also a conceptual advantage in this case of supplementing discrete choice data

with ratings data. Participants made choices between AAC systems for a number of differ-

ent children. Their discrete choices inform about the relative trade-offs participants made

between attributes of AAC systems, and how these relative trade-offs shift in response to

changes in child characteristics. However, it is only when this data is combined with the

ratings that comparisons on the same scale between different child vignettes can be made.

This then allows new insight to be drawn, and new policy relevant research questions to be

answered. Examples are whether AAC systems exist for all children that are regarded as a

good fit, and whether for some child vignettes there are no highly rated systems.

3.3 Case study 3 - Discrete choice experiment to value EQ-5D-5L

3.3.1 Data

EQ-5D is a generic multi-dimensional measure of health-related quality of life (HrQoL)

(Dolan, 1997). It measures HrQoL on five dimensions: mobility, self-care, usual activities,

pain or discomfort, and anxiety or depression. There are three-level and five-level versions

of the survey. In the five-level version (EQ-5D-5L) respondents indicate for each dimen-

sion which one of five statements most closely matches their health that day, with level 1

representing no problems and level 5 representing severe problems.
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EQ-5D is often used in economic evaluations of health treatments and services. By

assigning a value to each EQ-5D state (a “value set”) on a scale with 1 defined as “full

health” (level 1 on each dimension) and 0 defined as dead, measure of the HrQoL benefit

of a treatment can be constructed. Cost-utility analysis using EQ-5D data as a measure of

benefit is the method preferred by the National Institute for Health and Care Excellence

(NICE) in the UK when deciding whether or not to recommend treatments are funded by

the NHS.

Recently DCEs have been a popular method to create EQ-5D value sets, e.g. Devlin, Shah,

Feng, Mulhern, and van Hout (2018), Mulhern, Bansback, Hole, and Tsuchiya (2017), Ramos-

Goñi et al. (2017), Bansback, Brazier, Tsuchiya, and Anis (2012), Stolk, Oppe, Scalone, and

Krabbe (2010), and the data from this study comes from a similar exercise to create a value

set for the UK. DCE results are on a latent scale, and hence external information is needed

to anchor values to the full health=1, dead=0 scale (here a visual analogue scale exercise

was used). However, this process of anchoring valuations is not relevant to the current study,

thus only relative values are presented.

Survey participants were shown two EQ-5D-5L health states, and asked to choose which

they considered to be the best. They then rated their preferred health-state on a scale from

0 (the worst health the respondent can imagine) to 10 (the best health the respondent can

imagine). An example choice task is shown in Figure 6.

A D-efficient design was created using NGene with 8 blocks with 10 questions each. Two

samples were collected, a main sample of 3400 respondents which were representative of the

UK general public, and a “boost” sample of 507 UK men aged over 50.3

3.3.2 Analysis

Level 1 was chosen as the baseline for each dimension, so that the coefficients on levels 2-5

represent decrements to full health. As participants should value worse health states lower,

3This demographic was chosen to satisfy the aims of a separate research project
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(a) Discrete choice

(b) Rating

Figure 6: Example choice tasks from case study 3 discrete choice task
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a logical ordering is imposed that coefficients for higher levels should be more negative than

coefficients for lower levels. The same six models as in case studies 1 and 2 were estimated on

the main sample. Whether coefficients were statistically different from 0 at the 5% level was

assessed using t-tests with adjustment for multiple testing using Holm’s sequential Bonferroni

correction. For each model, the number of coefficients which did not have the expected

ordering (i.e. 0 > β2 > β3 > β4 > β5) was calculated. Model averaging was carried out

with two/one-step models with and without scale parameters, and the posterior probability

of participants being two/one-step decision-makers calculated from the results.

The models estimated using the main sample were used to predict for each choice task in

the DCE the probability of observing (i) both choices and ratings, (ii) choices alone and (iii)

ratings alone. The mean absolute difference between the predictions and observed frequencies

of choices/ratings in the boost sample were then calculated for each model. All estimation

was performed using the Apollo choice modelling package for R (Hess & Palma, 2019).

3.3.3 Results

The results of model estimation are given in Table 3. All taste parameters were statistically

significant in all models except MNL, where mobility level 3, self-care level 2 and usual

activities levels 2 and 3 were not significant.

The coefficients for usual activities levels 4 and 5 were illogically ordered in all models

except the two one-step COL models. In addition, the coefficients for self-care levels 4 and

5 in the OL model were illogically ordered, as well as the coefficients for self-care level 2 and

mobility levels 2 and 3 in the MNL model.

Figure 7 illustrates the models’ BIC. The combined MNL and OL models have a lower

BIC than all COL models. For COL models, two-step models have a lower BIC than one-step,

although differences are small.

Model averaging showed the percentage of two-step decision-makers was lower than in

case study 2, at 57.5% and 70.0% respectively for models without and with a scale pa-
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Figure 7: Bayesian information criteria for case study 3 models
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Table 4: Comparison of absolute differences between out-of-sample forecasts and observed
responses for case study 3

MNL OL 2-step 1-step 2-step 1-step
no scale no scale scale scale

Choices and mean 0.0201 0.0345 0.0205 0.0204
ratings sd 0.0216 0.036 0.0222 0.0221

95th percentile 0.0631 0.101 0.0665 0.0662
Choices only mean 0.037 0.0944 0.286 0.0986 0.0954

sd 0.0368 0.0571 0.146 0.061 0.0592
95th percentile 0.1 0.188 0.535 0.2 0.193

Ratings only mean 0.0307 0.038 0.0366 0.031 0.0307
sd 0.0313 0.0428 0.0372 0.0317 0.0313
95th percentile 0.0942 0.128 0.115 0.0955 0.0942

Note.sd = standard deviation

rameter. Figure 8 shows density plots of the posterior probabilities of belonging to each

decision-making class. It can be seen that there is greater heterogeneity than in case 2 as

the probability density is more spread out.

Figure 9 displays scatter plots of predicted choice-ordered probabilities from each model.

and the observed probabilities in the boost sample. The patterns are similar for all models,

with a tendency to over-predict low probabilities, and to under-predict high probabilities.

Table 4 summarises comparisons between out-of-sample predictions and observed re-

sponses. Differences between models are small, especially for the COL models when pre-

dicting joint choice-rating observations. Larger differences are seen when predicting choices

alone, and it is notable that no COL model has a lower mean absolute difference between

prediction and observation than the MNL model. The same is true when comparing OL to

COL models in predicting ratings alone, however differences are small.

3.3.4 Discussion

That coefficients are generally statistically significant is not particularly surprising given the

large sample size. Of greater interest in this case study is the fact that there is an intrinsic

logical ordering to coefficients. The MNL and OL models had five and four coefficients
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Figure 8: Model averaging posterior decision-making class allocation for case study 3
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Figure 9: Scatter plots of out-of-sample forecasts/observed choices for choice-ordered models
in case study 3
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illogically ordered, whereas the two-step COL models had only two coefficients each and the

one-step COL models had none. Combining choice and rating data is thus beneficial in this

case, as to create a value set for a HrQoL instrument it is essential that worse states have

lower values than better states.

In contrast to case study 2, here the combined MNL and OL models had a better model

fit than any COL model. This may be due to the increased range of the Likert scale, with

11 possible ratings compared to only seven for case study 2. The extremes of the scale were

chosen relatively rarely (states were rated 0 only 0.7% of the time, and rated 10 only 0.5%

of the time, leading to models predicting ratings to have high log-likelihoods. It may be that

using a separate MNL component that only had to predict a binary choice may result in the

better fit when combined with OL compared to COL models which had to predict choices

with the same coefficients that predicted ratings.

In this case study, unlike with case study 2, there is little reason why a positive probability

should be assigned for choosing an option that is not also the highest rated. There are no

plausible factors that should explain such a divergence between choices and ratings, thus a

one-step decision-making process is arguably more appropriate. However, the two-step COL

models have better fit than one-step models, albeit by a small amount.

More significantly, model averaging indicated that a majority of participants used a two-

step decision-making process. Yet comparing the results to case study 2, a grater fraction of

one-step decision-makers were observed, and there was greater heterogeneity in the posterior

probabilities of class membership. Combined with the large sample size, there is evidence

that many participants were using a one-step decision-making process.

This case study illustrates that COL models can predict out-of-sample responses with

some success. Even though a standard MNL model is superior on average at predicting

choices alone, and OL models were superior for ratings alone, it is not by much.

It must be acknowledged that the boost sample is in many ways similar to the main

sample on which the models were estimated, making out-of-sample prediction somewhat
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easier. However, the two samples do differ by construction in mean age and gender, which is

superior to the approach used by many studies in which a dataset is randomly split. Part of

the data is used for model construction and part for “out-of-sample” prediction, however in

expectation each sample will be identical on all observed and unobserved variables.

4 General discussion

In the above demonstrations of applying COL models, there was not necessarily an advantage

over standard MNL and OL models. Thus in cases where the researcher is only interested in

either choices or ratings, there is a case for using existing models such as MNL or OL.

However, if both choices and ratings are of interest, and the observations are created in

a joint process, it seems logical to use a modelling approach that takes account of the joint

nature of the data. Even if only choices are primarily of interest, there may be benefits to

using a joint approach, as was demonstrated in case study 3. There, the research question

was the relative valuation of EQ-5D levels, which may be obtained using discrete choices

alone. Yet only when using COL models did all coefficients have the expected signs, as

required for constructing a quality of life value set. In addition, if individuals are using a

one-step decision-making process with choices and ratings, then both MNL and OL (and

more complicated versions of them such as mixed logit) are misspecified.

Although joint modelling of choices and ratings may not necessarily give an advantage as

measured by performance metrics, adding ratings to choices does have a conceptual advantage

in that it allows measurement of strength of preference. This benefit is most readily seen in

case 2. The research question addressed participants’ preferences for different AAC systems,

and how these change if choosing for different children. Analysis of discrete choices alone

allows the modeller to create lists of all possible systems in order of preferences for each

child. However, it is only when combined with rating data that the strength of preference

can be assessed. Thus, for example, participants’ ranking of systems could be identical for
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two children, yet for one child a given system is much more preferred than all others, and for

the other child the preference is only weak.

It was argued that a two-step decision-making process was reasonable to assume for case

study 2, whereas a one-step model was reasonable to assume for case study 3. In practice,

two-step models provided better model fit than one-step models with both datasets, and

model averaging revealed that the majority of individuals’ choices were more consistent with

a two-step decision-making process. Yet in line with the arguments above, the fraction of

one-step decision-makers was higher in case study 3 than in case study 2, and case study 3’s

one-step models were the only ones to have all coefficients logically ordered. In fact, it could

be argued that in case study 3, one step decision-making should be a normative standard,

and two-step represents a deviation from logical decision-making.

It is a strength of the current paper that it has illustrated the application of COL models

in several different situations with different sources of data. The three case studies have also

each highlighted different aspects of using COL models. The data was either synthetic or

was stated preference data from hypothetical surveys. Using stated preference data had the

advantage that individuals’ choice sets were well defined. However, a disadvantage of this

study is that it does not examine how well COL models would perform with revealed prefer-

ence data. Future research could usefully study COL models with revealed preference data,

for example online retail data, with consumers selecting items, then rating them. Another

possibility in health may be to study patients who have a choice of treatment centres, and

who subsequently provide patient satisfaction ratings. A potential hurdle to be overcome in

each case would be to define individuals’ consideration sets.

In addition, although some evidence of the ability of COL models to provide out-of-sample

forecasts was shown in case study 3, it would be useful to examine their performance if the

estimation and evaluation samples differ more than they did here.
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5 Conclusion

The usefulness of COL models has been demonstrated, and they should be considered when

modelling data with both discrete choices and ratings. In addition, researchers carrying out

discrete choice experiments should consider adding to their survey a Likert scale question

rating their chosen alternative. This allows strength of preference to be assessed, and as only

the chosen alternative is rated, it minimises the additional burden on participants.

There is much future work to be carried out on COL models. In particular, participant

heterogeneity could be explored by introducing random parameters. Another possibility is

allowing some parameters to affect only choices or ratings.
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Appendix

Table A.1: Case study 2 attributes and levels

Child attribute Levels

Receptive and expressive language Delayed
Receptive language exceeding expressive language

Communication ability with AAC No previous AAC experience
Able to use AAC for a few communicative func-
tions
Able to use AAC for a range of communicative
functions

Child’s determination and persistence Does not appear motivated to communicate
through any methods and means
Motivated to communicate through symbol com-
munication systems
Only motivated to communicate through methods
other than symbol communication

Predicted future skills and abilities Regression
Plateau
Progression

AAC system attribute Levels

Vocabulary sets No vocabulary set
Fixed vocabulary set
Vocabulary set with staged progression

Consistency of layout Consistency of some aspects of layout
Consistency of all aspects of layout
Idiosyncratic layout

Type of vocabulary organisation Visual scene
Taxonomic
Semantic-syntactic
Pragmatic

Size of vocabulary Up to 50 vocabulary items
50-1000 vocabulary items
More than 1000 vocabulary items

Graphic representation Photos
Pictographic symbol set
Ideographic symbol system (with rules or encod-
ing)
Text
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