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ABSTRACT
In the era of big data, machine learning (ML) has emerged as a strong competitor of econometric

modelling, discrete choice models (DCMs) in particular. However, a key limitation of the purely data
driven models is the lack of  valuation measures – for example the difficulty in calculation of value of
time  to  feed  into  the  cost-benefit  analyses.  The  current  study  focuses  on  combining  ML-based
segmentation  approaches  with  DCM and tests  their  performances  against  latent  class  choice  models
(LCCM). LCCM allows the simultaneous allocation of individuals to a predefined number of classes
alongside the estimation of their mode choice behavior. For the combined ML and DCM, this is done as a
two-stage approach, where individuals are first allocated into clusters using a deterministic K-modes/K-
means algorithm and then a mode choice model is estimated per cluster. In both cases, the underlying
mode choice component is specified as a multinomial logit model. The dataset utilized in the current
study includes the trips of 540 unique individuals, 12524 in total, captured through GPS traces collected
using a smartphone app. The results suggest that LCCM performs significantly better than both variants
of the ML counterpart in terms of model fit. It also has clearer insights about the segment compositions.
The latter, however, results in a much faster estimation and produces reasonable Value of Time estimates
and demand elasticities. The findings are expected to provide guidance to researchers and practitioners in
choosing the most efficient method to capture the taste heterogeneity among the segments of the travelers.

Keywords: Unsupervised learning, Clustering, K-modes algorithm, Latent classes, mode choice 
modelling 
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1. INTRODUCTION
During the last  decade the abundance of data has provided not  only the potential  for  further

research advancements, but also posed challenges as to how to derive value out of those emerging data
sources. In the field of transport, specifically, different forms of data, such as GPS traces, Call Detail
Records,  geotagged tweets etc.  require  significant  pre-processing and knowledge that  transcends into
different fields of research (e.g. computer science) (Antoniou et al., 2019). The massive size of the data
has  also  led  to  increase  in  the  popularity  of  Machine  Learning  (ML)  techniques  over  traditional
econometric models (Discrete Choice Modelling (DCM) techniques for instance). This has led to the
necessity of comparing and contrasting ML with traditional DCM.1

Originating from the field of Computer Science, ML algorithms are generally  characterised as
non-parametric  methods  (with  some  exceptions)  aiming  to  minimise  the  errors  between  actual  and
predicted  outcomes  without  relying  on  any  behavioural  assumptions  of  the  underlying  model.  ML
encompasses  a  large  array  of  algorithms,  which  can  be  broadly  categorised  into  supervised  and
unsupervised learning. The majority of comparative studies in the literature between ML and DCM focus
on comparing supervised ML algorithms,  e.g.  Artificial  Neural  Networks and Random Forests,  with
DCM frameworks, such as MNL and Nested Logit, usually in the context of mode choice (Hensher and
Ton, 2000; Xie et al., 2003; Cantarella and de Luca, 2005; Zhang and Xie, 2008; Sekhar et al., 2016;
Hagenauer and Helbich, 2017). Their findings suggest that ML algorithms have the potential to be used as
an alternative method for behavioural modelling due to their superior predictive performance, although
Hensher and Ton (2000) also highlight the limitations associated with the lack of interpretable results
compared  to  a  DCM  framework.  Furthermore,  a  wide  range  of  studies  has  implemented  clustering
algorithms to  analyse  individual  behaviour  and uncover  mobility  patterns  (see  Anda  et  al.  2017 for
details).  Though such studies provide good insights about the state of the network, they have limited
applications in the context of predictions and/or valuation (e.g. calculation of value of time to feed into
the cost-benefit analyses).   

A key advantage of an ML-based approach is the efficiency in capturing the patterns in the data
which can then be used in segmenting the travelers and capturing the taste heterogeneity in the sample.
Several  studies  have  used  clustering  techniques  for  market/sample  segmentation  (Salomon and Ben-
Akiva, 1983; Lanzendorf, 2002; Krizek and Waddell, 2003) and reported that different lifestyle clusters
(identified  empirically)  have  different  choice  elasticities.  However,  these  studies  have  three  key
limitations.  Firstly, the  previous  studies  relied  on  “traditional” samples  with  regard  to  their  data
collection methods (e.g. single RP choice scenarios, short trip diaries, etc.) and it is worth investigating
the performance of similar approaches with passively collected larger samples (more participants and/or
longer panels). Secondly, these studies did not compare the model performances with the more advanced
discrete choice models that account for heterogeneity among groups of decision makers - Latent Class
Choice  Modelling  (LCCM)  for  example.  Thirdly, the  studies  compared  the  goodness  of  fit  and/or
prediction capabilities of ML and DCM as opposed to in-depth efforts to formulate models that has the
best of both worlds – computational advantages on ML and the behavioral interpretation of DCM that can
be used for valuation. 

The current research aims to address this research gap by comparing the performance of different
sample  segmentation  techniques  with  a  discrete  choice  model  as  the  base  for  the  actual  choice
component.  The aim is to find the best method to capture the heterogeneity among the travelers and
simultaneously have outputs that can be used for valuation. The following variants of LCCM and hybrid
models (ML combined with DCM) have been tested in this regard:  

3

1

2
3
4
5

6

7
8
9

10
11
12
13
14
15

16

17

18

19
20
21
22
23
24
25
26
27

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45



Tsoleridis, Choudhury and Hess

Model 1: LCCM where the probabilistic sample segmentation (class membership) and mode choices are
modelled simultaneously. 
Model 2: ML based segmentation using socio-demographic data only combined with DCM for the mode
choice component
Model 3: ML based segmentation using socio-demographic and choice data combined with DCM for the
mode choice component 

For  all  models,  the  a  priori assumption  is  that  there  is  a  discrete  number  of  segments
(classes/clusters); the taste heterogeneity is constant within the same segment but varies among different
segments.  While  Model  1  provides  a  behavioural  model  specification,  where  both  the  individual
sociodemographic characteristics and the observed mobility choices are taken into consideration, Models
2 and 3 are expected to offer much faster and potentially more efficient segmentation. 

The dataset used in the current study is a combination of sociodemographic features and a trip
diary captured through GPS tracking using a smartphone app (56693 trips from 721 unique individuals in
the  raw dataset).  Therefore,  the  dataset  provides  a  rich level  of  semantic  information in  addition to
capturing a wider spectrum of trips and activities from a set of individuals. Though such passive data
collection methods have the potential to lead to more accurate estimated parameters of travel behaviour,
there  are  challenges  associated  with  deriving  the  full  set  of  variables  that  are  important  from  a
behavioural modelling perspective (e.g. accurate travel times, costs etc.) and defining the choice sets,
specifically determining the availabilities for the unchosen alternatives. In addition to the contribution
regarding the comparison of ML- and DCM-based segmentation, the current study also demonstrates how
these data limitations can be overcome.

The remainder of this paper is structured as follows. In Sections 2 and 3, the methodological
framework and the data used for the study’s practical implementation are described, respectively. Section
4 focuses  on  the  results  with  focus  on  the  comparison  between the  different  approaches.  The  main
conclusions and the direction of future research are summarized in the concluding section.

2. METHODOLOGY
The  methodological  framework  developed  for  this  study  involves  the  implementation  of

probabilistic and deterministic sample segmentation with the use of traditional Discrete Choice Modelling
(DCM) techniques  and Machine  Learning  (ML)  algorithms,  respectively.  For  the  former  (Model  1),
Latent Class Choice Modelling (LCCM) is used to simultaneously allocate individuals probabilistically
into a discrete number of classes, based on selected sociodemographic features, and estimate a choice
model regarding their mode choice behaviour based on level of service attributes. For the latter, a two-
stage approach is performed by first segmenting the sample deterministically using K-modes/K-means
clustering and then applying a DCM framework to each cluster separately. The inputs in the K-modes
clustering vary between Models 2 and 3 with the clustering using only the sociodemographic data and the
combination of sociodemographic and choice data, respectively. 

2.1 Latent Class Choice Modelling (Model 1)
Discrete Choice Modelling (DCM) has been used extensively in the field of transport, since the

seminal study of McFadden (1973), inspired by the previous work of Luce (1959) and Marschak (1960)
linking behavioural  choice theory with microeconomics. As described in  McFadden (2000), the main
concept of Random Utility Theory and its basic Multinomial Logit model (MNL) had been extended
significantly in the following decades leading to the formulation of more behaviourally accurate model
representations of individual behaviour. 
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DCM is based on the underlying theory of Random Utility Maximisation (RUM) suggesting that a
rational individual n is more likely to choose among a set of possible alternatives J the one resulting in
the maximisation of utility U . The utility U n , j is comprised by a deterministic and a stochastic part. An
additive form of the Utility function is shown in the following equation (Equation 1) (Train, 2009):

U n , j=V n , j+εn , j∀ j∈ J                          (1)

where  V n , j and  ε n , j are  the  deterministic  and  stochastic  utilities,  respectively,  for  individual  n and
alternative j. The deterministic or systematic part of the utility V n , j is usually formed as a linear-in-the-
parameters function (Equation 2) of a vector X n, j containing the observed alternative’s j attributes and
the  individual’s  n characteristics,  and  their  respective  taste  coefficients  βn , j including  an  inherent
preference towards alternative  j as  β0 , j,  also known as the Alternative Specific Constant (ASC). The
stochastic part or  the  error term ε n , j is  considered to include all  the  uncaptured features  that  could
influence the utility of alternative j for individual n, but are currently unknown to the researcher

V n , j=β0, j+βn , j Xn , j             (2)

LCCM is an extension of DCM which uses an endogenous sample segmentation  technique to
capture the heterogeneity in the sample (Kamakura and Russell, 1989). The basic premise of LCCM is
that  the  individuals  in  the  sample can be allocated into a discrete  number  of  classes  based on their
sociodemographic features and their observed behaviour. The LCCM framework includes the estimation
of a class allocation model, where individuals are allocated into a pre-specified number of classes, and a
choice model aiming to explain the behaviour of individuals given their class  ( Kamakura and Russell,
1989; Bhat, 1997; Hess, 2014). Under that framework, the likelihood of individual n is calculated as:

Ln=∑
s=1

S

πn , s ¿¿       (3)

where  πn, s is the probability that individual  n belongs to class  s from a total number of  S classes and
P jn, t

¿ ( βs ) is the probability that individual n chooses alternative j in choice task t  given that he/she belongs

to class  s. The underlying choice model is usually specified as an MNL model, but extensions to more
advanced modelling specifications are also possible. Under that framework, the taste coefficients βs are
the same for each individual in a specific class. 

2.2 ML-based sample segmentation techniques (Models 2 & 3)
ML unsupervised learning contains a range of algorithms capable of effectively segmenting the

sample into a discrete number of clusters based on patterns in the dataset. Clustering algorithms can be
categorised into:

 Centroid-based, such as the “hard” and “soft” K-means/modes algorithms
 Connectivity-based, such as Hierarchical clustering
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 Density-based, such as the DBSCAN and OPTICS algorithms
 Distribution-based, such as the Gaussian Mixture Models

K-means (MacQueen, 1967) and K-modes  (Aranganayagi and Thangavel, 2009) are two of the
most  widely-known  clustering  algorithms  that  can  be  applied  to  continuous  and  discrete  data,
respectively.  As most  clustering algorithms,  they are based on a  distance or  (dis-)similarity measure
between the data points in a dataset. Points with high similarity between them are allocated in the same
cluster. The points within the same cluster should also be distinguishable from points in other clusters.
Traditional K-means and K-modes perform a form of  “hard” clustering as each point is assigned to a
unique cluster. Contrary to that the more generalized “soft” or “fuzzy” K-modes algorithm (Kim et al.,
2004) assigns a weight or probability to each point and for each cluster. Therefore, each point has a non-
zero probability to belong to any cluster, similar to LCCM. In the current study, “hard” K-means and K-
modes algorithms are implemented and compared with LCCM.

As a starting point, the K-means/K-modes algorithms choose a predetermined number of random
points in the multidimensional data space as the initial cluster centroids and the similarities from all data
points to those centroids are calculated. The points are allocated to their closest centroid and then a new
cluster centroid is calculated as the mean/mode of all the data points in the cluster. At the next step, new
similarities are calculated again from all the data points to all the centroids and the algorithm continuous
iteratively until no more changes occur in the cluster centroids. The underlying purpose of the algorithm
is  to  minimise  the  within-cluster-sum-of-differences  (WCSD)  and  at  the  same  time  maximise  the
between-cluster-sum-of- differences (BCSD). That means that points within the same cluster would have
the  greatest  degree  of  similarity,  while  also  being  as  dissimilar  as  possible  from points  in  different
clusters. 

3. DATA
The data used for the practical implementation of the current study was collected as part of the

research project DECISIONS carried out by the Choice Modelling Centre at ITS Leeds, between October
2016-March 2017. Several submodules are included in the dataset as part of the survey capturing various
aspects of the participants’ mobility behaviour, in-home and out-of-home activities, their daily energy
usage and their social network using a name generator.  In addition, the project included a household
survey module capturing the participants’ most important socio-demographic information. The dataset
and its submodules is thoroughly detailed in Calastri et al. (2018a). In regard to mobility behaviour, the
individuals’  daily  trips  were  captured  through  GPS  tracking  using  a  smartphone  app,  while  the
participants also had to tag their completed trips with further information regarding their trip purpose and
mode  of  transport.  As  a  result,  the  “DECISIONS”  dataset  provides  a  combination  of  emerging  and
traditional data sources.

3.1 Data cleaning
Two separate datasets are used for the “DECISIONS” project, one corresponding to the daily trip

diary captured through GPS tracking and the other for the rest of the project’s submodules including the
socio-demographic component. The former was acquired in the form of an SQL-database file, while the
latter as an excel sheet. Initially, 56693 trips were included in the raw database file performed by 721
unique individuals. These trips had to be combined with the sociodemographic file using a unique trip
identifier number. The pre-processing analysis involved the identification of trip errors in the GPS file.
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More specifically, the trips’ timestamps were checked to detect trips starting at the same time or before
the end of the previous trip resulting in zero or negative activity durations.

At the next stage of data cleaning, trip purposes were examined. The trip purposes, reported by
the participants, among others included the purpose of “Change of travel mode”. It was decided to merge
those journeys together with the following trips, since the subsequent mode choice analysis would focus
solely on the main mode and not on the access mode. Furthermore, trips with no additional information
on mode and purpose (untagged trips) were removed and the geographical scope was limited to the region
of Yorkshire. This led to a cleaned dataset with 38624 observations from 721 respondents. The mode
alternatives selected for the mode choice analysis were car, bus, rail, taxi, cycling and walking. 

3.2 Data enrichment 
Due to the nature of the data at hand, certain important variables from a behavioural modelling

perspective were missing (travel cost and travel time for non-chosen alternatives). For that reason, a data
enrichment process was performed with different components summarised in the following paragraphs.

3.2.1 Travel time/distance estimation
In the current study, real network travel times and distances for each origin-destination pair and

for  each  mode  were  derived  using  the  Google  “Directions”  API
(https://developers.google.com/maps/documentation/directions/intro).  The  API  was  implemented  to
estimate the travel times/distances both for the chosen and the non-chosen alternatives, since using the
stated time/distance for the chosen mode and the network travel times/distances for the non-chosen ones
would have the risk of producing biased estimates (Calastri et al., 2018b). The API provided travel times
based on the stated time of day, hence the state of the network was taken into consideration. Furthermore,
travel times per link segment were obtained, instead of a total travel time for the whole trip, with the
purpose of more accurately estimating fuel consumption.

3.2.2 Cost estimation
For car trips, travel cost was segmented into fuel/operating costs and parking costs. The first two

were calculated using WebTAG’s specifications (Department for Transport, 2014). Taking advantage of
the per segment travel times and distances derived from the API, car travel cost was initially calculated
for each trip segment and further aggregated per trip. Location-specific parking costs were defined using
average parking prices per hour for specific places in the region of Yorkshire, such as CBDs, rail stations
and the airport. For all other locations, it was assumed that there was no parking cost involved.

For taxi, the cost was calculated as a combination of the initial charge (fixed price), the average
kilometre cost (pounds per kilometre) and the average time cost (pounds per minute) taking into account
the different tariffs during day, night and weekend. Relevant information on taxi costs for Yorkshire was
found only for the cities of Leeds and Sheffield. Separate taxi travel costs (distance and time costs) were
calculated using the average prices for Leeds and Sheffield for each trip. The final taxi travel cost was
calculated as the average of the distance and time cost per trip.

For bus and rail, two different cost calculations were performed. The first one took into account
the discounted trip cost for season ticket holders, while for the remaining individuals a fixed fare price
was applied. For the second calculation, only a fixed fare was applied to each participant regardless of
their possession of a season ticket. The results of both cost calculations were used at the initial model
specification  stage  (MNL  estimation)  and  the  respective  model  results  were  compared  with  values
suggested by WEBTag (Value of Time, bus fare elasticity) for validation purposes. The first approach
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(separate  costs  for  season  and  non-season ticket  holders)  was  the  one  that  yielded  results  closer  to
WEBTag’s values and was selected for the subsequent more advanced model specifications.

3.2.3 Choice set generation
In the current study a tour-based approach is followed in contrast to a trip-based one, in which a

tour is defined as a sequence of trips starting and finishing at the same location (e.g. the individual’s
home location)  (as  used  by  Miller  et  al.,  2005;  Hasnine  and  Habib,  2019).  Although the  modelling
framework in the current  study does not  take into consideration the dynamics inside a tour (activity
schedule, next location etc.), the implemented tour-based approach helps to specify more behaviourally
accurate  mode  availability  assumptions.  Whether  or  not  a  mode  is  included in  the  choice set  hence
depends  on  the  general  availability  of  the  mode  (person-specific),  consideration  of  the  mode  (trip-
specific) (Calastri et al., 2018b) and feasibility of using the mode (restrictions imposed by earlier choices
made in the same tour) . 

For person-specific mode availability, the participants’ stated availability for car and cycling was 
taken into consideration, while the remaining alternatives (taxi, bus, rail and walking) were considered to 
be available for everyone. 

In regard to trip-specific mode consideration, different feasibility assumptions per mode were
considered taking advantage of the information derived from the Google API. Walking and cycling are
considered for trips less than 3 km and 20km respectively (the maximum distance of trips where each
have been chosen in the full dataset). Car is considered for trips of more than 50m distance to avoid the
inclusion of short insignificant trips with close to 0 min travel time. Taxi is considered for trips of more
than 50m and less than 81km (the maximum distance where taxi is the chosen mode in the full dataset).
Bus is not considered for very short trips (where Google API suggests only walking segments) and only
considered for trips with less than 3 transfers and with distance more than the minimum and less than the
maximum distance of trips where bus is the chosen mode. Rail is not considered for very short trips
(where Google API suggests walking only) and only considered for trips with less than 2 transfers and
with distance more than the minimum distance of trips where rail is the chosen mode. Rail trips were
allowed to include bus segments, since bus can be considered as an access/egress mode for rail, but that
was not the case for the opposite scenario, i.e. using rail as an access/egress mode for bus .

In terms of restrictions imposed by the earlier modes used in the tour, if car is the chosen mode
for the outbound trip, then the driver has no choice but to return the car to the starting location (home)
during the last trip of the tour making the rest of the alternatives unavailable. For that purpose, when car
is chosen for the first trip of a tour, the remaining alternatives are available for the remaining trips of the
tour except from the returning trip to home (Figure 2). Due to this constraint, those returning trips were
not included for mode choice modelling, since there is not any actual choice involved. On the contrary,
when bus, rail, taxi, cycling or walking is chosen for the first trip of the tour, car is available only for the
first  trip,  but  not  for  the  remaining  trips  of  the  tour  (Figure  2).  Finally,  after  considering  all  the
availability/consideration assumptions, the trips with only one available alternative were removed from
the following mode choice modelling.
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Figure :2 Tour-based mode availability 

3.3 Descriptive statistics
The final dataset consists of 12524 trips made by 540 unique individuals. In Figure 3, the mode

share and the OD pairs are depicted both for the trips starting and ending inside the region of Yorkshire
and those inside the Local Authority of Leeds. In general, the majority of trips start and finish inside
Leeds  and most  of  them are  between Leeds and the  neighbouring  city  of  Bradford.  In  Table 1 the
descriptive statistics of the sociodemographic features included in the dataset and the level of service
attributes  per  available/considered  mode,  derived  from  the  Google  API,  are  presented.  The  sample
includes more females than males and more individuals of higher education (from undergraduate level
and above). Regarding the level of service attributes, the travel times, costs and distances are consistent
with the expected values indicating an accurate estimation of those variables. Rail has the highest travel
time and distance as it is considered a longer-distance mode compared to the rest and has the highest cost,
since rail tickets are more expensive. Cycling and walking have the lowest average distance due to the
require human effort. Bus travel distance is the lowest compared to the rest of mechanised modes, an
indication  that  travelling  longer  distances  by  bus  produces  generally  more  discomfort  than  in  the
remaining alternatives. Taxi trips despite using the same network and routes as car trips have a lower
travel time and distance, since the cost is significantly more compared to car.
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Figure 3: Mode share and OD pairs for trips inside the region of Yorkshire and the local authority 
of Leeds

TABLE 1: Descriptive statistics of sociodemographic features and Level of Service attributes

Attributes
(variable name)

Attribute levels Number of
observations

Percentage
(%)

Sociodemographic features

Gender
Male 230 42.6

Female 310 57.4

Age

18-24 98 18.1
25-39 200 37.1
40-59 201 37.2

Above 60 41 7.6

Occupation

Employed 359 66.5
Student 69 12.8

Other (unemployed,
retired, other
occupation)

8 20.7

Household income Below 50k 288 53.3
Above 50k 198 36.7
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Non reporters 54 10.0

Education

Lower (O-level, A-
level, vocational)

156 28.9

Higher
(undergraduate, MSc,

PhD)
384 71.1

Marital status

Single 165 30.6
Married 238 44.1

Other (divorced,
widowed, cohabiting)

137 25.4

Number of cars owned mean 0.9 -
Number of bicycles owned mean 0.8 -

Household size mean 1.9 -

Transit season ticket holder 
Yes 144 26.7
No 396 73.3

Level of Service attributes
Car travel time (min) mean 17.1 -
Bus travel time (min) mean 35.9 -
Rail travel time (min) mean 60.5 -
Taxi travel time (min) mean 15.8 -

Cycling travel time (min) mean 22.8 -
Walking travel time (min) mean 18.6 -

Car travel cost (£) mean 1.3 -
Bus travel cost (£) mean 2.6 -
Rail travel cost (£) mean 10.4 -
Taxi travel cost (£) mean 8.7 -

Car travel distance (km) mean 10.7 -
Bus travel distance (km) mean 8.3 -
Rail travel distance (km) mean 21.2 -
Taxi travel distance (km) mean 9.0 -

Cycling travel distance (km) mean 6.3 -
Walking travel distance (km) mean 1.5 -

4. RESULTS 

4.1 LCCM development (Model 1)
Regarding the LCCM development, the basic form for the mode choice model component was

developed  first.  Different  model  specifications  were  tested  including  the  available  level  of  service
variables, namely travel time, travel cost, in-vehicle travel time and access-egress time, with the last two
being specified only for bus and rail alternatives. 

For the latent class membership component, 2, 3, 4 and 5 classes have been tested with the aim of
providing interpretable results and distinguishable individual behaviour among the classes. A model with
6 latent classes could not be estimated due to numerical issues and no further attempt was made to try
models with additional classes. For the covariates included in the class allocation model, the requirement
was to include variables that were statistically significant for at least one class and be able to provide a
meaningful behavioural interpretation. Following that approach, the sociodemographic features of gender
and age alongside the long-term mobility choices of number of cars in the household and the ownership
of a transit  season ticket for either bus or rail  were included in the class allocation model.  After the
allocation of individuals into classes, the class-specific mode choice model is estimated using the ASCs,
travel time and travel cost as independent variables. The final LCCM framework developed is illustrated
in Figure 4.
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Figure 4 LCCM modelling framework

In order to select the preferred number of classes, a comparison was made among the estimated
models with 2, 3, 4 and 5 classes in terms of LL, AIC, BIC and adjusted Rho-square Models consistently
performed better with the addition of more classes as shown by the continuous improvement of all model
fit statistics. Nonetheless, after the 3-class model the LL improved less with additional classes indicating
diminishing returns in terms of model fit when choosing a more complex model specification. As a result,
the 3-class model was selected as the most optimal segmentation of the sample population. 

In Table 2, the modelling outputs of the class-specific and class allocation model for the 3-class
LCCM are depicted and compared with the estimates of the unsegmented model. Further, as a measure of
validation, the total VoT was calculated as the weighted average of the class-specific VoTs, excluding
Class 1, due to a travel cost coefficient non-significantly different than 0. Moreover, the bus fare elasticity
was estimated as the demand change for 1% ticket price increase. Those values were compared to the
values suggested by the Transport Appraisal Guidance in the UK. The estimated VoT (9.9  £/hr) is very
close to the suggested value (13.87 £/hr) (Department for Transport, 2014) although a little lower, and the
estimated bus fare elasticity is -0.18 being at the lower bound of the suggested range of values (from-0.16
to -0.65) (Dunkerley et al., 2018).

Table 2: Estimated parameters for the class allocation, the class-specific (3-class model) and the
unsegmented mode choice models

Estimated
parameters

Class 1 Class 2 Class 3 Unsegmented
model

Class allocation model
Sample size
percentage

51%` 28% 21% -

Class-specific
constants

-0.2070 (-0.35) -0.7228 (-1.59) - -

Individual characteristics -
Male (base) - - - -

Female 0.9559*** (2.73) 0.8117** (2.20) - -
Age 18-24 (base) - - - -

Age 25-39 0.2000 (0.40) 0.8678* (1.89) - -
Age 40-59 0.2179 (0.43) 0.7593 (1.50) - -

Age above 60 1.6649 (1.60) 2.6537** (2.42) - -
Number of cars 0.5604** (2.12) -0.7986** (-2.43) - -
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Transit season ticket
holders

-1.177** (-2.17) 1.0875*** (2.61) - -

Class-specific mode choice model Unsegmented
model

Alternative-specific constants
Car - - - -
Bus -4.1758*** (-10.63) -0.2998 (-0.73) -2.0197*** (-4.49) -1.7177*** 

(-10.82)
Rail -1.7068*** (-4.53) -2.0385*** (-3.56) 0.8816** (2.18) -1.2837*** 

(-5.34)
Taxi -4.9392*** (-13.46) -2.1033*** (-4.45) -1.2008*** (-1.75) -2.8984*** 

(-12.06)
Cycling -6.4372*** (-11.48) -5.6561*** (-6.95) -1.2855*** (-3.94) -3.4101*** 

(-15.18)
Walking -1.3043*** (-5.12) 0.0450 (0.08) 0.5140 (1.40) -0.3191* (-1.89)

Level of Service attributes
Travel time (min) -0.061*** (-5.62) -0.082** (-2.35) -0.042*** (-6.17) -0.0711*** 

(-8.02)
Travel cost (£) -0.138 (-0.42) -0.335*** (-3.52) -0.285*** (-4.99) -0.2650*** 

(-7.51)
Validation measures

VoT (£/hr) -1 10.8 8.9 16.1
Total VoT (£/hr) 9.9 16.1
Bus fare elasticity -0.18 -0.27

Fit statistics
LL (final) -4605.82 -5911.14

AIC 9281.64 11836.27
BIC 9541.88 11888.32

Adjusted R-square 0.6901 0.6048
Number of
individuals

540 540

Number of
observations

12524 12524

(***, **, * Significant at the 99% (2.575), 95% (1.96) and 90% (1.645) confidence level, respectively)

1VoT for Class 1 could not be computed due to the non-significant travel cost parameter

4.2 K-modes/K-means clustering approach (Models 2 & 3) 

In order to select the optimum number of clusters for K-means/K-modes, the  “Elbow” method
(Thorndike, 1953) was chosen to identify the cut-off point where no significant improvement on within-
the-cluster-sum-of-differences occurs anymore with the addition of more clusters. For the implementation
of the “Elbow” method, the K-means/K-modes algorithm has been applied iteratively in the dataset for
each case by specifying a different number of clusters each time, ranging from 1 to 10. 

In Model 2 only sociodemographic data is included for clustering, namely the same covariates as
in the LCCM, and the second stage a DCM is estimated per cluster. Since the included variables were all
discrete, the K-modes algorithm was utilised. In Model 3, sociodemographic data and mobility-related
information are included for clustering. The mobility data refers to the number of times each mode is
chosen  per  individual.  The  K-means  algorithm  was  implemented  in  that  case,  since  there  was  a
combination of discrete and continuous variables. At the second stage, a DCM is estimated per cluster.
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(a) Model 2                                                    (b) Model 3

Figure 5 The “Elbow” method results

4.2.1 Model 2

The K-modes clustering algorithm was applied to the dataset and the sample was segmented into
4  clusters  covering  53.4%,  31.6%,  10.8%  and  4.2%  of  the  sample,  respectively.  Comparing  the
sociodemographic percentages within each cluster with the unsegmented sample percentages, it was seen
that members of Cluster 1, which covers more than half of the sample, have a high inherent preference for
car. Cluster 2 has a distinct preference for car over the rest of the alternatives except for walking where
there is a non-significant ASC. Furthermore, it is worth noting that this cluster has the highest VoT and
bus fare  elasticity.  Cluster  3  has  a  non-significant  predisposition for  car  over  bus,  rail  and walking.
Cluster 4, covering the smallest sample percentage, has a strong preference for car. 

Regarding  the  model  assessment,  the  combined total  loglikelihood  from the  4-cluster  model
provides  a  significant  improvement  over  the  unsegmented  model  as  suggested  by  the  LR-test.  The
validation measures of total VoT and bus fare elasticity are again within an acceptable range. The total
LL (-5712.58), however, is significantly worse than the LCCM (-4605.82) indicating that there is still
uncaptured heterogeneity in the two-stage Clustering-based model using only sociodemographic data.

Table 3: Estimated parameters for the cluster-specific mode choice model of Model 2

Estimated
parameters

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Alternative-specific constants
Car - - - -
Bus -2.0620*** (-8.44) -1.6257*** (-6.12) -0.3972 (-1.04) -1.7740*** (-4.28)
Rail -1.3368*** (-3.94) -1.4795*** (-4.21) -0.4955 (-0.93) -1.4798*** (-2.72)
Taxi -3.6579*** (-11.04) -2.3727*** (-5.73) -1.9202*** (-3.06) -3.4811*** (-3.95)

Cycling -3.2769*** (-12.28) -4.9209*** (-9.39) -3.2395*** (-3.89) -3.1407** (-2.57)
Walking -0.6367** (-2.32) 0.1383 (0.53) 0.2974 (0.71) -1.2049** (-2.45)

Level of Service attributes
Travel time (min) -0.0591*** (-4.26) -0.1027*** (-7.21) -0.0735*** (-5.13) -0.0561*** (-2.73)

Travel cost (£) -0.2319*** (-5.52) -0.3273*** (-5.07) -0.2408** (-2.24) -0.2805** (-2.47)
Validation measures

VoT (£/hr) 15.3 18.8 18.3 12.0
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Bus fare elasticity -0.26 -0.38 -0.12 -0.20
Total VoT (£/hr) 16.6

Total bus fare
elasticity

-0.28

Fit statistics
LL (final) -2983.54 -1659.70 -827.32 -242.04
Total LL -5712.58

AIC 5981.08 3333.4 1668.64 498.08
BIC 6028.74 3377.39 1705.09 527.89

Adjusted R-square 0.6351 0.6357 0.4633 0.6156
Sample percentage

(%)
53.4 31.6 10.8 4.2

Number of
individuals

288 178 50 24

Number of
observations

6693 3959 1349 523

4.2.2 Model 3

For the second clustering-based model, the 4-cluster model performed the best. The 4 estimated
clusters  cover  35.4%,  33.7%,  18.5%  and  12.4%.  The  model  outputs  and  the  sociodemographic
percentages of the clusters are presented in  Tables 4 and  6,  respectively.  The striking feature is  the
difference in the socio-demographic characteristics of each cluster from Model 2.

Table 4: Estimated parameters for the cluster-specific mode choice model of ML_choice_DCM

Estimated
parameters

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Alternative-specific constants
Car - - - -
Bus -0.5170** (-2.54) -3.3353*** (-11.70) -0.7306** (-2.19) -4.1227*** 

(-8.44)
Rail -0.5871** (-2.28) -1.9193*** (-3.43) -0.0832 (-0.15) -0.3457 

(-0.48)
Taxi -2.3488*** (-7.13) -3.5611*** (-10.79) -1.7874*** (-3.22) -3.2076*** 

(-6.47)
Cycling -2.1775*** (-7.33) -3.8796*** (-10.97) -2.7978*** (-4.37) -6.9390*** 

(-7.25)
Walking 0.2429 (1.05) -1.4793*** (-7.15) 1.7403*** (4.95) -2.1422*** (-

5.55)
Level of Service attributes

Travel time (min) -0.0683*** (-5.89) -0.0652*** (-6.25) -0.0706*** (-3.08) -0.0634*** 
(-5.02)

Travel cost (£) -0.2056*** (-4.54) -0.2717*** (-4.80) -0.1851** (-2.56) -0.4104*** 
(-7.05)

Validation measures
VoT (£/hr) 19.9 14.4 22.9 9.3

Bus fare elasticity -0.16 -0.43 -0.22 -0.72
Total VoT (£/hr) 17.3

Total bus fare
elasticity

-0.33

Fit statistics
LL (final) -3011.97 -1047.97 -1089.19 -205.55
Total LL -5354.68
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AIC 6037.94 2109.93 2192.39 425.1
BIC 6082.73 2154.36 2232.62 462.54

Adjusted R-square 0.4011 0.8033 0.561 0.8975
Sample percentage

(%)
35.4 33.7 18.5 12.4

Number of individuals 305 147 62 26
Number of

observations
4435 4219 2316 1554

(***, **, * Significant at the 99% (2.575), 95% (1.96) and 90% (1.645) confidence level, respectively)

4.3 COMPARISON

As a comparison of the 3 models estimated it should be highlighted that the Model 1(LCCM)
outperformed  both  clustering-based  models  in  terms  of  model  fit,  thus  resulting  in  more  accurate
estimates. Model 3 performed better than Model 2 which is expected given that it uses more inputs. 

In terms of validation with the WEBTag values, all the values for the full models where close to
the suggested values and within the suggested limits. The estimated VoT of LCCM was smaller than
those of the two clustering-based models. On the other hand, Model 3 showed the highest VoT and bus
fare elasticity. The other striking feature is the dissimilarity in the sociodemographic composition in the
segments in the three models (Table 6) which denote how inherently different the three models are. 
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Table 5 Model comparison

Model
compariso
n measures

LCCM ML_socio_DCM ML_choice_DCM WEBTag
valuesClass 1 Class 2 Class 3 Cluster

1
Cluster

2
Cluster

3
Cluster

4
Cluster

1
Cluste

r 2
Cluste

r 3
Cluster

4
VoT (£/hr) - 10.8 8.9 15.3 18.8 18.3 12.0 19.9 14.4 22.9 9.3 -
Bus fare
elasticity

- - - -0.26 -0.38 -0.12 -0.20 -0.16 -0.43 -0.22 -0.72 -

Total VoT
(£/hr)

9.9 16.6 17.3 13.87

Total bus
fare elasticity

-0.18 -0.28 -0.33 From -016
to -0.65

Total LL -4605.82 -5712.58 -5354.68 -

Table 6: Sociodemographic percentages and qualitative assessment per model

Sociodemographic
characteristics

(sample
percentages/mean

values)

LCCM ML_socio_DCM ML_choice_DCM
Class 1 Class 2 Class 3 Cluster

1
Cluster

2
Cluster

3
Cluster

4
Cluster

1
Cluster

2
Cluster

3
Cluster

4

Sample size
percentage

0.51 0.28 0.21 0.53 0.32 0.11 0.04 0.35 0.34 0.19 0.12

Included sociodemographic features
Male (0.43) 0.36

(lower)
0.43

(average)
0.58

(higher)
0.71

(higher)
0.00

(lower)
0.00

(lower)
1.00

(higher)
0.45

(average)
0.37

(lower)
0.47

(average)
0.35

(lower)
Female (0.57) 0.64

(higher)
0.57

(average)
0.42

(lower)
0.29

(lower)
1.00

(higher)
1.00

(higher)
0.00

(lower)
0.55

(average)
0.63

(higher)
0.53

(average)
0.65

(higher)
Age 18-24 (0.18) 0.16

(average)
0.17

(average)
0.25

(higher)
0.13

(lower)
0.23

(higher)
0.38

(higher)
0.00

(lower)
0.18

(average)
0.07

(lower)
0.53

(higher)
0.00

(lower)
Age 25-39 (0.37) 0.35

(average)
0.41

(higher)
0.36

(average)
0.27

(lower)
0.69

(higher)
0.00

(lower)
0.00

(lower)
0.40

(average)
0.36

(average)
0.31

(lower)
0.23

(lower)
Age 40-59 (0.37) 0.40

(higher)
0.32

(lower)
0.37

(average)
0.60

(higher)
0.00

(lower)
0.58

(higher)
0.00

(lower)
0.35

(average)
0.46

(higher)
0.13

(lower)
0.77

(higher)
Age above 60

(0.08)
0.09

(average)
0.09

(average)
0.02

(lower)
0.00

(lower)
0.08

(average)
0.04

(lower)
1.00

(higher)
0.07

(average)
0.11

(higher)
0.03

(lower)
0.00

(lower)
Number of cars

(0.9)
1.1

(higher)
0.6

(lower)
0.8

(average)
1.0

(average)
0.8

(average)
0.6

(lower)
1.1

(higher)
0.8

(average)
1.3

(higher)
0.04

(lower)
1.5

(higher)
Transit season 0.12 0.53 0.28 0.23 0.12 1.00 0.21 0.39 0.10 0.15 0.08
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ticket Yes (0.27) (lower) (higher) (average) (lower) (lower) (higher) (lower) (higher) (lower) (lower) (lower)
Transit season

ticket No (0.73)
0.88

(higher)
0.47

(lower)
0.72

(average)
0.77

(higher)
0.88

(higher)
0.00

(lower)
0.79

(higher)
0.61

(lower)
0.90

(lower)
0.85

(higher)
0.92

(higher)
Non included sociodemographic features

Household income
below 50k (0.53)

0.49
(lower)

0.63
(higher)

0.52
(average)

0.50
(average)

0.54
(average)

0.58
(higher)

0.75
(higher)

0.57
(higher)

0.48
(lower)

0.61
(higher)

0.31
(lower)

Household income
above 50k (0.37)

0.44
(higher)

0.25
(lower)

0.34
(average)

0.42
(higher)

0.32
(lower)

0.28
(lower)

0.25
(lower)

0.33
(lower)

0.46
(higher)

0.21
(lower)

0.65
(higher)

Household income
not reported (0.10)

0.08
(average)

0.12
(average)

0.14
(higher)

0.08
(average)

0.14
(higher)

0.14
(higher)

0.00
(lower)

0.11
(average)

0.06
(lower)

0.18
(higher)

0.04
(lower)

Education lower
(A-level, O-level,
vocational) (0.29)

0.29
(average)

0.33
(higher)

0.24
(lower)

0.33
(average)

0.17
(lower)

0.36
(higher)

0.46
(higher)

0.31
(average)

0.33
(average)

0.13
(lower)

0.19
(lower)

Education higher
(undergraduate,

MSc, PhD) (0.71)

0.71
(average)

0.67
(lower)

0.76
(higher)

0.67
(average)

0.83
(higher)

0.64
(lower)

0.54
(lower)

0.69
(average)

0.67
(average)

0.87
(higher)

0.81
(higher)

Marital status-
single (0.31)

0.24
(lower)

0.35
(higher)

0.41
(higher)

0.30
(average)

0.33
(average)

0.40
(higher)

0.00
(lower)

0.32
(average)

0.18
(lower)

0.68
(higher)

0.04
(lower)

Marital status-
married (0.44)

0.51
(higher)

0.35
(lower)

0.40
(average)

0.49
(higher)

0.38
(lower)

0.24
(lower)

0.75
(higher)

0.43
(average)

0.54
(higher)

0.08
(lower)

0.85
(higher)

Marital status-other
(divorced,
widowed,

cohabiting) (0.25)

0.26
(average)

0.30
(higher)

0.19
(lower)

0.21
(lower)

0.29
(higher)

0.36
(higher)

0.25
(average)

0.25
(average)

0.29
(average)

0.24
(average)

0.12
(lower)

Household size
(1.9)

2.0
(average)

1.6
(lower)

2.3
(higher)

2.0
(average)

1.9
(average)

2.1
(higher)

1.0
(lower)

1.9
(average)

1.8
(average)

2.3
(higher)

2.4
(higher)

Occupation
working (0.67)

0.71
(higher)

0.63
(average)

0.61
(lower)

0.75
(higher)

0.58
(lower)

0.62
(lower)

0.29
(lower)

0.68
(average)

0.73
(higher)

0.39
(lower)

0.85
(higher)

Occupation student
(0.13)

0.10
(lower)

0.11
(average)

0.23
(higher)

0.10
(average)

0.18
(higher)

0.16
(higher)

0.04
(lower)

0.11
(average)

0.03
(lower)

0.50
(higher)

0.00
(lower)

Occupation other
(unemployed,
retired, other

occupation) (0.20)

0.19
(average)

0.27
(higher)

0.17
(average)

0.15
(lower)

0.24
(higher)

0.22
(average)

0.67
(higher)

0.21
(average)

0.24
(average)

0.11
(lower)

0.15
(lower)
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5. CONCLUSIONS
As a  general  conclusion,  it  should be  highlighted that  both  sample segmentation approaches

resulted  in  models  with  better  statistical  fit  than  the  unsegmented  model.  That  alone  is  of  great
significance from a policy perspective. The general  practice of estimating and applying unsegmented
behavioural models to real-world projects could have adverse effects in project valuation and in creating a
model shift to more sustainable modes, since they are based on biased estimates. Incorporating latent
lifestyles  into  a  behavioural  model  can  provide  an  insight  on  the  individuals’  subconscious  taste
preferences  leading  to  better  planned  policy  initiatives.  Regarding  the  comparison  of  the  models
estimated,  the  LCCM  outperformed  the  clustering-based  models  by  a  large  margin.  From  the  two
clustering-based models, Model 3 (which included both socio-demographics and choices) resulted a better
model  fit  than  the  one  that  uses  only  socio-demographics.  Furthermore,  significant  differences  were
observed in the composition of the segments in the three methods. 

Nonetheless,  the current  study was also subject  to certain limitations.  The initial  goal  during
model development was to estimate a mixed LCCM model and mixed MNL models for the clustering-
based approach to capture heterogeneity both across classes/clusters and among individuals within the
same  class/cluster.  That  was  not  possible,  however,  due  to  numerical  issues  in  mixed  LCCM.
Specifically, the presence of a non-significant travel cost parameter for Class 1 resulted in errors during
the calculation of the covariance matrix, possibly because no further heterogeneity could be captured for
an already insignificant parameter. Furthermore, there are more advanced clustering algorithms, such as
the “Soft” or “Fuzzy” K-means/K-modes which performs a probabilistic clustering by allocating a data
point to a cluster with a certain probability or weight. As a next step, the performance of those more
advanced  “Soft” K-means/K-modes algorithms is  going to be assessed,  which is  believed to provide
better results than the traditional algorithms tested in the current study.

Even in their current form, however, the findings are expected to provide guidance to researchers
and practitioners in choosing the most  efficient  method to capture the taste heterogeneity among the
segments of the travelers.
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