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ABSTRACT1

Latent class models, which have traditionally been used for taste heterogeneity, are increasingly2
used as a tool for capturing heterogeneity in other components, such as information/attribute pro-3
cessing and decision rules. This often leads to substantial improvement in model fit and the appar-4
ent finding of large clusters of individuals making choices in ways that are substantially different5
from those used by others. These claims have not been without criticism highlighting the potential6
risk of confounding with other more model-specific heterogeneity. In this paper, we add a different7
angle of thought to this conversation by contrasting the findings obtained with model averaging,8
which combines the results from a number of separately (rather than simultaneously) estimated9
models. We find that this leads to significant reductions in the amount of heterogeneity of the type10
analysts have sought to uncover with latent class structures of late.11

Keywords: latent class; information processing; attribute non-attendance; decision rule het-12
erogeneity13

1. INTRODUCTION14

Latent class structures have long been used as a tool for introducing heterogeneity across indi-15
vidual decision makers in choice models (Greene and Hensher, 2003; Hess, 2014). Over the last16
decade, there has also been increasing interest in using the models to allow for heterogeneity in the17
actual underlying model structure across individuals, with two key applications, in decision rule18
heterogeneity and in information processing work. While the former has received more attention,19
the latter work actually takes historical precedence.20

A key interest in the field of information processing strategies (IPS) or attribute processing21
strategies (APS) has been the notion that some decision makers may actually make their choices22
based on only a subset of the attributes that describe the alternatives at hand. This phenomenon23
is typically referred to as attribute non-attendance (ANA) or attribute ignoring, and an in-depth24
review of work in this area is given in Hensher (2010). The interest in this topic in the present25
discussions comes in the context of ways to accommodate ANA in models. A key role in this area26
was played by the early discussions in Hess and Rose (2007), who proposed the use of a latent27
class approach to accommodate ANA, a method since adopted by numerous other studies (e.g.28
Hole, 2011; Scarpa et al., 2009; Hensher and Greene, 2010; Campbell et al., 2010; Hensher et al.,29
2012). With this approach, different latent classes relate to different combinations of attendance30
and non-attendance across attributes. For each attribute treated in this manner, there exists a non-31
zero coefficient (to be estimated), which is used in the attendance classes, while the attribute is32
not employed in the non-attendance classes, i.e. the coefficient is set to zero. In a complete33
specification, covering all possible combinations, this would thus lead to 2K classes, with K being34
the number of attributes, where a given coefficient will take the same value in all classes where35
that attribute is included.36

In addition to the vector β , we now have a SxK matrix Λ, in which each row contains a37
different combination of 0 and 1 elements, where S = 2K . Next, let A ◦ B be the element-by-38
element product of two equally sized vectors A and B, yielding a vector C of the same size, where39
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the kth element of C is obtained by multiplying the kth element of A with the kth element of B.1
Using this notation, the specific values used for the taste coefficients in class s are then given by2
the vector βs = β ◦Λs. The likelihood for decision maker n is then given by:3

Ln (β ,π) =
S

∑
s=1

πs

T

∏
t=1

Pni∗t (βs = β ◦Λs) . (1)

A different application of such heterogeneous structures in different classes has arisen in the con-4
text of decision rule heterogeneity. There has long been interest in the notion that different in-5
dividuals make their decisions in different ways, going back to work in psychology in the 1970s6
(Montgomery and Svenson, 1976). Although structures belonging to the family of random utility7
models have come to dominate, it is important to recognise that alternative paradigms for decision8
making have been proposed, for example the elimination by aspects model of Tversky (1972), but9
also more recent work based on the concepts of happiness (Abou-Zeid and Ben-Akiva, 2010) and10
regret (Chorus et al., 2008; Chorus, 2010). The evidence in the literature is that which paradigm11
works best is very much dataset specific. Hess et al. (2012) put forward the hypothesis that varia-12
tions in decision rules may be across decision makers with a single dataset, not just across datasets,13
and propose the use of a confirmatory latent class approach in this context.14

Specifically, let Ln (βm,m) give the probability of the observed sequence of choices for de-15
cision maker n, conditional on using a choice model identified as m, where this uses a vector of16
parameters βm. The Hess et al. (2012) framework is based on the idea that M different behavioural17
processes are used in the data. The probability for the sequence of choices observed for decision18
maker n is now given by:19

Ln (β ,π) =
M

∑
m=1

πn,mLn (βm,m) , (2)

where we use different behavioural processes in different classes, with the probability of decision20
rule class m for decision maker n given by πn,m. Hess et al. (2012) additionally allow for random21
heterogeneity in parameters within individual decision rule classes, such that:22

Ln (Ω,π) =
M

∑
m=1

πn,m

∫
βm

Ln (βm,m) f (βm,Ωm)dβm, (3)

where βm ∼ f (βm,Ωm) and Ωm = 〈Ω1, . . . ,ΩM〉.23

Hess et al. (2012) use the model to allow for mixtures between random utility maximisation,24
random regret minimisation and elimination by aspects. In later work, Hess and Stathopoulos25
(2012) use an approach as in Walker and Ben-Akiva (2002) and Hess et al. (2013a), making the26
class allocation a function of a latent factor, which in this case also explains decision makers’ real27
world choices.28

At this stage, it should be noted that a latent class model mixing various decision rules is29
just one example of a wider set of structures that combine different models. A further possibility30
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for example would be a model using different GEV nesting structures in different latent classes,1
somewhat similar in aims to the work of Ishaq et al. (2013). Finally, a separate body of work looks2
at using different choice sets in different classes, in the context of choice set generation work (see3
e.g. Swait and Ben-Akiva 1985; Ben-Akiva and Boccara 1995 and Gopinath 1995, section 2.7).4

While the work using latent class structures for heterogeneity in either decision rules or infor-5
mation processing strategies has been shown to lead to substantial improvement in fit and apparent6
meaningful insights (see references above), it has also not been without criticism. In particular,7
concerns have been raised about extensive risk of confounding between taste heterogeneity and8
heterogeneity in the process or model structure. In a traditional latent class model, the different9
β parameters in different classes are used solely to uncover taste heterogeneity. In a latent class10
model that combines different structures in different classes, these individual models will them-11
selves be making use of different β parameters, while in the case of ANA, they will use different12
combinations of the β parameters. There is then the real possibility that evidence of a substan-13
tial class allocation probability for different classes will be driven by heterogeneity in sensitivities14
rather than actual process. These concerns have found empirical support in the work of Hess et al.15
(2013b) who show that the share for non-attendance classes reduces substantially when allowing16
for additional random heterogeneity, while the work of Hess et al. (2016) shows that allowing for17
random heterogeneity in the parameters of RUM and RRM models within a RUM-RRM mixture18
model substantially reduces the extent of decision rule heterogeneity.19

The use in practice of such latent class models allowing for different structures in different20
classes continues to be very popular (Boeri and Longo, 2017; Dey et al., 2018) despite these con-21
cerns. A key reason is likely that the inclusion of additional taste heterogeneity, as in the work of22
Hess et al. (2013b) and Hess et al. (2016) is computationally very difficult. In the present paper,23
we thus use a different approach by highlighting how model averaging can be used as a diagnostic24
tool for the potential confounding between taste heterogeneity and other heterogeneity.25

Model averaging, in this context, can be implemented as a sequential latent class model.26
Whereas a fully flexible model simultaneously estimates the parameters of the class component27
models as well as the class shares, a model averaging approach estimates the separate classes as28
individual models first, before estimating the class shares separately with the individual model29
parameters fixed. To apply model averaging, we first estimate a number of different individual30
models, where say L(Cn | m,Ωm) gives the likelihood of the sequence of choices Cn observed for31
person n, conditional on using model m, where this model uses a vector of parameters Ωm. We32
have that:33

L(Cn | m,Ωm) =
∫

βm

Tn

∏
t=1

Pm
(

j∗n,t | βm
)

fm (βm |Ωm)dβm. (4)

In this general notation, we have that Pm
(

j∗n,t | βm
)

gives the probability of the observed choice34
j∗n,t for decision maker n in choice situation t, conditional on using model m, where we allow for a35
general notation such that the parameters βm are distributed according to fm (βm |Ωm). Of course,36
it is possible that no random heterogeneity is used in which case the integral drops out, or that a37
latent class structure is used, replacing the integral with a weighted summation.38

An analyst will estimate M different such individual models, of differing form, each yielding39
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a set of parameters and a likelihood at the individual level L(Cn | m,Ωm). In the context of the1
present paper, the set of M models would include models with different specifications for IPS or2
different specifications in terms of underlying decision rule. The model averaging process then3
computes the overall likelihood for person n as the weighted average across M models, with:4

Ln (πn,Ω) =
M

∑
m=1

πm,nL(Cn | m,Ωm) , (5)

where ∑
M
m=1 πm,n = 1 and 0 ≤ πm,n ≤ = 1. This overall likelihood is conditional on the vector5

of weights πn =
〈
π1,n, . . . ,πM,n

〉
and the combined parameter estimates from the different models6

Ω = 〈Ω1, . . . ,ΩM〉.7

The aim of using model averaging in the present paper is to investigate potential cases of8
confounding in models using simultaneous estimation of different model structures. Of course,9
a caveat applies in that it is also possible that the presence of decision rule heterogeneity and/or10
heterogeneity in processing strategies can only be uncovered when estimating models in which the11
parameter estimates for the different subclasses are informed more by some individuals in the data12
than by others, as would be the case in simultaneous estimation.13

The remainder of this paper is organised as follows. We first present the data used in our14
analysis (Section 2). This is followed in Section 3 by our work on attribute noon attendance, and15
Section 4 by our work on decision rule heterogeneity. Finally, some conclusions are presented in16
Section 5.17

2. DATA18

Our main analysis relies on a SC dataset where public transport commuters living in the UK each19
make ten choices between three routes. A total of 368 participants completed the survey resulting20
in 3,680 choices. Each choice task involves an invariant reference trip and two hypothetical alter-21
natives. Each alternative is described by travel time (in minutes), fare (in £), rate of crowded trips,22
rate of delays (both out of 10 trips), the average length of delays (across delayed trips) and the cost23
and availability of a delay information service (in £). This dataset has previously been used for24
decision rule heterogeneity (Hess and Stathopoulos, 2013) as well as for ANA work (Hess et al.,25
2013b), making it an ideal case study for the present paper.26

3. INFORMATION PROCESSING WORK27

We first look at the case of ANA, where we adopt a specification in line with Hess et al. (2013b).28

We first estimate a simple MNL model, where we use a logarithmic transform on the fare29
attribute given earlier evidence of strong non-linearity. This model uses five marginal utility pa-30
rameters for the continuous attributes, two parameters for the dummy coded delay information31
system, and two alternative specific constants (ASC). The results for this model are shown in Table32
1 where all estimates are of the correct sign.33
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TABLE 1 : MNL results for public transport route choice

LL(final) -3,366.95
ρ2 0.1672

adj. ρ2 0.165

Estimate Rob.t.ratio(0)

ASC1 0.3841 5.76
ASC2 0.1608 3.26

βtt -0.0467 -9.47
βlog-fare -5.9726 -18.89

βcrowding -0.2198 -8.51
βrate of delays -0.2411 -9.82
βaverage delay -0.0421 -5.35

βinfo system charged -0.0833 -1.04
βinfo system free 0.3370 5.06

We next move to the latent class model for attribute non-attendance. We use a model with
2K classes, with all combinations of attendance and non-attendance for the K parameters. The
probability for class s is given by πs, with 0 ≤ πs ≤ 1 and ∑

S
s=1 πs = 1. Rather than imposing

constraints in estimation, an easier approach is to use πs =
eδs

∑
S
m=1 eδm

, with one δm, i.e. the parameter
used in the class allocation probabilities, being fixed to zero. Nevertheless, this specification still
involves estimating 2K−1 separate δ terms, of which many will be very negative, equating to very
small class probabilities. In the context of the applications presented in this paper, we make use of
a simplified approach, by instead setting

πs =
K

∏
k=1

(
Λs,k

(
1−PN-A,k

)
+
(
1−Λs,k

)
PN-A,k

)
, (6)

where Λs,k gives the entry in Λ relating to attribute k in class s, where this is 1 only if attribute k1
is attended to in class s. With this specification, we only need to estimated K separate δ elements2

(with PN-A,k =
eδk

eδk+1
), as opposed to 2K − 1, leading to significant reductions in the number of3

parameters.4

The results for this model are shown in Table 2. We see an improvement in log-likelihood by5
308.16 units for 7 additional parameters. This is highly significant and in line with previous find-6
ings when using such a confirmatory latent class model for ANA. We also see that the parameters7
in the attendance classes have increased substantially, where this is in line with the notion that the8
MNL model would find an intermediary value between 0 for the non-attenders and a positive value9
for those attending to the attribute. However, the implied rates of non-attendance are unrealistically10
high, exceeding 50% for all attributes except fare.11

We finally look at the estimation of our model averaging structure. For this, we first estimate12
128 individual models, corresponding to all possible combinations of attribute attendance and non-13
attendance, i.e. going from a model with all 9 model parameters to one with the two ASCs only.14
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TABLE 2 : Confirmatory latent class model for attribute non-attendance

LL(final) -3,058.79
ρ2 0.2434

adj. ρ2 0.2395

Estimate Rob.t.ratio(0)

ASC1 0.8416 10.32
ASC2 0.329 4.23

βtt -0.1841 -5.64
βlog-fare -14.6889 -14.37

βcrowding -1.1524 -7.16
βrate of delays -1.1307 -5.62
βaverage delay -0.3966 -4.85

βinfo system charged 2.3264 3.37
βinfo system free 2.0433 7.23

δNA,tt 0.3232 1.11
δNA,log-fare -0.5142 -3.43

δNA,crowding 0.7767 3.3
δNA,rate of delays 0.7363 2.43
δNA,average delay 1.1917 4.02

δNA,info system charged 3.1776 3.82
δNA,info system free 0.9874 3.61

Implied rate of NA
Estimate Rob.t.ratio(0)

travel time 0.5801 8.18
fare 0.3742 10.65

crowding 0.685 13.49
rate of delays 0.6762 10.21
average delay 0.767 14.48

info system charged 0.96 30.05
info system free 0.7286 13.47

We then estimate the model averaging structure, where we again use multiplicative class allocation1
probabilities, as in the LC model. We initially estimate seven class allocation weights as in the LC2
model but find that four the first four attributes, the constants go towards −∞, suggesting a zero3
probability of ANA.4

The results of the model averaging work are shown in Table 3. We see that this model now5
only offers a marginally better log-likelihood than the MNL model in Table 1, much in contrast6
with the LC model in Table 2. In addition to the earlier finding of zero weight for any classes7
that imply non-attendance of either time, fare, crowding or the rate of delays, we see low rates8
for average delay and the free information system, with a higher rate for the charged system.9
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We further see that the 8 models that obtain the best individual log-likelihoods are also the only1
8 models that contribute to the model average. However, the best ranking model individually2
is not necessarily the one contributing the most to the model average. Finally, out of the 3683
individuals in the data, only 95 have their choices explained the best way by one of these 8 models,4
where a remarkable 104 out of the 128 models have at least one individual where they are the best5
performing model.6

Overall, the findings from this analysis are much in contrast with those from the confirmatory7
latent class model in that very little evidence of ANA is found. In addition, there is very little8
variation in the remaining parameters across classes. Of course, the counter-argument could be9
that the model averaging approach cannot retrieve ANA as it is based on individual models that10
each apply a homogenous approach to all individuals. However, some reassurance can be obtained11
from the fact that the model averaging results are in line with the findings by Hess et al. (2013b)12
which find evidence of ANA only for the average delay attribute and for the delay information13
attribute after allowing for random heterogeneity in their models. It is thus doubtful whether14
additional insights would be obtained with more flexibility for the individual models, such as by15
including random heterogeneity.16

4. DECISION RULE HETEROGENEITY WORK17

We next turn to decision rule heterogeneity. To maximise the possibility of finding such hetero-18
geneity, we consider five very different decision rules, namely:19

Multinomial logit (MNL): We assume that the utility a respondent n obtains from alternative i20
(out of J alternatives) in choice task t is:21

Vint =Uint + εint , (7)

where Vint and εint are the deterministic and random components of utility respectively. The22
assumption of a type I extreme value distribution for εint then gives us the usual MNL choice23
probabilities:24

PMNL,int =
eVint

∑
J
j=1 eV jnt

. (8)

Random regret minimisation (RRM): We base our random regret minimisation (RRM) model25
on the updated specification of Chorus (2010). Thus, the deterministic regret for respondent26
n for alternative i in choice task t is given by:27

Rint = δRRM,i +
K

∑
k=1

∑
j 6=i

ln(1+ eβk(x jntk−xintk)) (9)

with k = 1, ...,K is an index across attributes, βk is a attribute-specific coefficient for attribute28
k and δRRM,i is an alternative specific constant. With the error component of regret also29
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being given by a type I extreme value distribution, the corresponding RRM probabilities for1
a respondent n choosing alternative i in choice task t is given by:2

PRRM,int =
e−Rint

∑
J
j=1 e−R jnt

(10)

Decision field theory (DFT): DFT is a dynamic, stochastic model where the preferences for al-3
ternatives update over the course of the decision-making process (Busemeyer and Townsend,4
1992). Under decision field theory (DFT), a decision-maker stochastically considers the dif-5
ferent attributes of the alternatives over the course of a decision-making process, resulting in6
the preference values updating iteratively:7

Pt = S ·Pt−1 +Vt , (11)

where Pt is a column vector containing the preference values of each alternative i at time t.8
S is a feedback matrix with memory and sensitivity parameters and Vt is a valence vector,9
which determines which attribute is attended to at time t. The valence vector can be described10
by:11

Vt =C ·M ·Wt + εt (12)

where C is a contrast matrix used to rescale the values such that they total zero, M is the12
matrix of attribute values and Wt = [0..1..0]′ with entry k = 1 if and only if attribute k is13
the attribute being attended to by the decision-maker at preference updating step t. A DFT14
model thus estimates a weight, wk, for the likelihood of attending to attribute k. As the error15
term, εt is drawn from a normal distribution with mean 0 (and a variance which is an es-16
timated parameter), the preference values Pt converge to a multivariate normal distribution.17
To calculate the probabilities of alternatives under decision field theory we thus simply re-18
quire the expectation and covariance of Pt (ξt and Ωt , respectively). Hence the probability19
of choosing alternative j from a set of J alternatives at time t is:20

PDFT

[
max
i∈J

Pt [i] = Pt [ j]
]
=
∫

X>0
exp
[
−(X−Γ)′Λ−1(X−Γ)/2

]
/(2π|Λ|0.5)dX (13)

with X = [Pt [ j]−Pt [1] , ...,Pt [ j]−Pt [J]]
′, Γ = Lξt , Λ = LΩtL′ and L a matrix comprised of21

a column vector of 1s and a negative identity matrix of size J− 1 where J is the number22
of alternatives. The column vector of 1s is placed in the ith column where i is the chosen23
alternative. The DFT model utilised in the empirical tests in this paper is based on the version24
in Hancock et al. (2018a), which incorporates attribute-specific scaling factors 1.25

Quantum pairwise comparison (QPCA) Our quantum model is based on the first model (quan-26
tum pairwise comparison framework A) defined by Hancock et al. (2019). Under a quantum27
model, the possible choice alternatives can be represented by a set of orthogonal vectors28
which make up the basis for a multidimensional Hilbert space (Bruza et al., 2015). A29
decision-maker’s opinion or ‘state’ can then be represented by another vector within this30

1For a full description of decision field theory, how it can be applied and how the different parameters in the model
work, readers should consult Hancock et al. (2018b) and Hancock et al. (2018a).
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space. The action of making a choice is then represented by a projection from this state vec-1
tor onto the vector representing the chosen alternative (see figures in Hancock et al. (2019).2
Allowing the state vector to be of unit length results in the set of squared projection lengths3
onto each of the possible alternatives summing to one. Under QPCA, the length of projection4
for alternative i (for respondent n in choice task t) is:5

|ρint |= δQPCA,i + I0 +
K

∑
k=1

∑
j 6=i

wti j · ln(1+ eβk(xintk−x jntk)), (14)

where δQPCA,i are alternative-specific constants, I0 is a constant that has the same value6
across all alternatives, wti j is a weight for the relative importance of the comparison between7
alternatives i and j and βk is a coefficient for attribute k as before for RRM. Once these8
projection lengths have been calculated, the probability for each alternative can be defined9
simply as:10

PQPCA, jnt =
|ρ jnt |2

∑
J
i=1(|ρint |2)

, (15)

where i = 1, ...J is an index across the possible alternatives.11

Relative advantage maximisation (RAM) In RAM (Leong and Hensher, 2014), the utility for12
respondent n in choice task t is:13

Uint = δRAM,i +
K

∑
k=1

βk · xintk +∑
j 6=i

RA(i, j), (16)

which is equivalent to a multinomial logit model with the addition of the comparison of14
relative advantages RA(i, j) of alternative i in comparison to each of the other alternatives.15
This relative advantage is then defined:16

RA(i, j) =
A(i, j)

A(i, j)+D(i, j)
, (17)

where the advantages are calculated A(i, j) = ln(1+ eβk(xintk−x jntk)) and the disadvantages17
D(i, j) = ln(1+ eβk(x jntk−xintk)).18

For our SP dataset, we first apply the five different models individually, obtaining the results given19
in Table 4. We see that DFT obtains the best log-likelihood ahead of QPCA, with the performance20
of the three logit-style models is poorer and comparatively more similar. As a first step, we look at21
model averaging across all five models applied to this dataset, where the resulting shares and fit are22
shown in Table 4. We see that the model average leads to a further small improvement in model23
fit over the best fitting individual model, i.e. DFT, where this model also obtains by far the largest24
share in the model average. As with earlier examples, the shares are not necessarily proportional25
to the model fit of the individual model, and we see that RRM obtains a substantially larger share26
than QPCA, despite having poorer overall individual log-likelihood. This again shows that some27
models can work well for some people even if they obtain a lower overall fit to the sample.28



Hancock and Hess 11

TABLE 4 : Results from different individual models applied to the SP dataset

Model Type Log-likelihood BIC MA Share

1 MNL -3,360.43 6,803 0.00%
2 RRM -3,363.91 6,810 17.67%
3 DFT -3,317.18 6,749 76.54%
4 QPCA -3,336.44 6,771 5.70%
5 RAM -3,354.55 6,791 0.08%

Model averaging -3,312.40

In practice, the estimation of a latent class model with five separate classes all using individ-1
ual decision rules is computationally challenging and most applications rely on just combining a2
couple of different rules. We therefore look at the estimation of 15 different latent class structures3
with two classes per model, thus also allowing for five models where the two classes are of the4
same type, i.e. looking for taste heterogeneity alone. Table 5 gives the log-likelihoods of these5
models. For all 15 models, a likelihood ratio test against the corresponding model (in the case of6
single decision rule) or two corresponding models (in the case of two decision rules) clearly rejects7
the base model. This would provide evidence of taste heterogeneity (in the case of single structure8
models) and would typically be seen as evidence of decision rule heterogeneity in the case of the9
models with two different structures in the two classes.10

TABLE 5 : Results from latent class models applied to SP dataset

Model Class 1 Class 2 Log-likelihood BIC MA Share

1 MNL MNL -3,113.13 6,399 0.0%
2 MNL RRM -3,102.66 6,378 0.0%
3 MNL DFT -3,099.84 6,380 6.7%
4 MNL QPC -3,106.76 6,394 0.0%
5 MNL RAM -3,100.79 6,374 0.0%
6 RRM RRM -3,106.33 6,385 16.0%
7 RRM DFT -3,086.79 6,354 11.7%
8 RRM QPC -3,096.35 6,373 0.0%
9 RRM RAM -3,104.22 6,381 0.0%

10 DFT DFT -3,077.79 6,361 52.8%
11 DFT QPC -3,085.28 6,376 0.0%
12 DFT RAM -3,085.38 6,351 0.0%
13 QPC QPC -3,095.71 6,380 12.8%
14 QPC RAM -3,094.59 6,370 0.0%
15 RAM RAM -3,100.27 6,373 0.0%

Model Averaging -3,071.46

Most existing applications compare a model combining multiple different decision rules to11
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a set of single class models using the individual rules. This comparison is of course likely to1
be biased in the presence of taste heterogeneity. Crucially, the improvements to be made from2
combining different structures depend on their individual performance. For example, we see that,3
for DFT, which is the best performing individual model in Table 4, combining the model with a4
different structure does not reach as high a log-likelihood as a structure with two separate DFT5
classes, although a better BIC may be obtained. On the other hand, for those models that perform6
less well individually, combining them with a different structure gives a better log-likelihood than7
a model with two classes using the same structure. This already suggests that the results from8
the latent class structure point more towards taste heterogeneity than decision rule heterogeneity.9
Further insights are detailed in Table 6, which for each pair of different decision rules (x,y), gives10
the difference in model fit between this model and the better fitting model from the latent class11
models with x in both classes or y in both classes2. We see only two cases in favour of decision-rule12
heterogeneity. The MNL-RRM model outperforms RRM-RRM by 3.67 log-likelihood units (as13
well as the MNL-MNL model by 10.47 units). Additionally, QPC-RAM has a better log-likelihood14
than either QPC-QPC or RAM-RAM. However, all other differences are negative, indicating that15
models with the same decision rule in the 2 different classes frequently perform just as well or16
better than models with differing decision rules.17

Further evidence is given in the model averaging results in Table 5. We see that model av-18
eraging obtains a better log-likelihood than any of the individual LC models. Crucially, 81.6% of19
the share is given to models that each time use just a single decision rule, again highlighting the20
importance of within-model taste heterogeneity, at least for this data.21

TABLE 6 : Differences in log-likelihood between combinations of rules and best fitting model
using same rule in both classes

MNL 3.67 -22.05 -11.06 -0.52
RRM -9.00 -0.64 -3.95

DFT -7.49 -7.59
QPC 1.12

RAM

We explore the best example for decision-rule heterogeneity (MNL-RRM) in more detail22
by also considering the outputs for the parameter estimates, in comparison to a model average23
performed on MNL and RRM. The results for this are shown in Table 7. For each model we have24
coefficients for travel time (TT), log of the fare (LFare3), rate of crowding (Crowd), length of25
delays (Delay), rate of delays (Rate), a reliability level (Rel, created by calculating the expected26
length of delays), and the provision of a charged delay information service (Inf) or a free service27
(InfF). Finally, we include two alternative specific constants for the first two alternatives. Table 728
gives model fit as well as estimates for the above parameters for both a latent class model and a29
model averaging approach. The model averaging approach separately runs MNL and RRM models30
before then estimating a class allocation parameter individually. Crucially, the model averaging31
approach does not result in a significant improvement over a MNL model on its own, with an32

2Note that no formal fit comparisons are made here.
3Note that we use a log transform of the fare rather than the fare itself as a cost damping affect is observed.
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improvement of just 0.07 log-likelihood units. As a contrast, the latent class approach results in1
a vast improvement in model fit (258 units). At face value, this would again suggest decision2
rule heterogeneity, although the fit is not much better than for the MNL-MNL or RRM-RRM3
models. Most significantly, it appears that the fare parameter estimates (highlighted in red) are4
very different between the two classes. In contrast with the model averaging results, and given the5
poor class specific model fit for the RRM class (compared to the RRM-RRM model), we believe6
that this finding shows that a substantial share of the improvements obtained by this model are due7
to heterogeneity in the cost sensitivity rather than heterogeneity in the decision rules. This means8
that the classes individually have very poor fit (as they cannot explain all individuals) but when9
combined into a latent class approach, the result is a model with far superior model fit. Together10
with the poor improvement from model averaging, these results suggest that most of the model11
improvement is due to taste rather than decision rule heterogeneity.12

TABLE 7 : A detailed example of model averaging compared to a simultaneous latent class ap-
proach using MNL and RRM

Latent Class - 1 model Model averaging - 3 models
21 pars, estimated simultaneously 2*10 pars, then 1 for MA
Class 1:MNL Class 2:RRM Class 1: MNL Class 2: RRM

Class LL: -3,645.30 -4,431.55 -3,360.43 -3,363.91
Log-likelihood -3,102.66 -3,360.36

Class LL: -3,645.30 -4,431.55 -3,360.43 -3,363.91
Log-likelihood -3,102.66 -3,360.36

ascalt1 0.64 (6.42) 0.04 (0.27) 0.39 (5.85) 0.27 (4.17)
ascalt2 0.25 (2.81) 0.20 (1.13) 0.16 (3.3) 0.17 (3.38)
βT T -0.05 (-6.74) -0.05 (-6.79) -0.05 (-9.5) -0.03 (-9.58)

βL f are -3.21 (-6.1) -11.32 (-7.58) -6.00 (-18.87) -4.11 (-17.66)
βCrowd -0.31 (-7.41) -0.15 (-2.89) -0.22 (-8.58) -0.15 (-8.59)
βDelay -0.06 (-1.27) -0.05 (-1.29) -0.03 (-3.24) -0.02 (-3.06)
βRate -0.34 (-4.82) -0.09 (-1.76) -0.19 (-5.96) -0.12 (-5.82)
βRel -0.05 (-3.22) 0.00 (0.06) -0.06 (-2.64) -0.04 (-2.71)
βIn f -0.10 (-0.82) -0.16 (-1.09) -0.09 (-1.13) -0.05 (-0.95)

βIn f F 0.54 (5.84) 0.05 (0.47) 0.33 (4.95) 0.22 (4.85)
πm 59.30% (10.89) 40.70% 87.70% (2.7) 12.30%



Hancock and Hess 14

5. CONCLUSIONS1

In this paper, we revisit the use of latent class models to capture different behavioural processes2
such as attribute non-attendance and decision rule heterogeneity. These approaches have been very3
popular in recent years and have often been shown to produce significant gains in fit over simpler4
models. We first argue that many such findings may be due to an unfair comparison with models5
not allowing for any heterogeneity and that the findings may in fact be driven by taste heterogeneity6
at the level of a fixed model specification rather than the presence of other phenomena. We have7
contrasted the findings obtained from such latent class models with those obtained using model8
averaging which combines the evidence from a number of separately estimated models. This latter9
approach of course leads to inferior model fit compared to a simultaneous latent class model but10
our findings provide some evidence that suggests that these bigger improvements may indeed be11
in part due to effects other than those that analysts seek to uncover.12

In practice, an analyst should of course attempt to simultaneously allow for all different types13
of heterogeneity whilst remaining aware of potential confounding. This would however require the14
use of latent class structures with many different classes and quickly become computationally and15
empirically infeasible. While we do not suggest that researchers abandon the use of latent class16
structures for purposes other than taste heterogeneity, we urge for some caution in interpretation17
and suggest that model averaging can provide a useful tool for checking the likely validity of their18
insights.19

As a closing comment, the findings in the application looking at decision rule heterogeneity20
are particularly insightful. They suggest that there is more scope for heterogeneity in parame-21
ters across individuals conditional on a specific model structure rather than heterogeneity across22
individuals in the model structure itself. In many ways this is not surprising given that datasets,23
especially from stated choice survey, are relatively homogeneous in the structure of the choice sets24
and explanatory variables. The models that work best are more likely to be dataset specific rather25
than person specific. More work is of course required, including testing using simulated datasets.26
This is especially important with a view to looking into the ability of model averaging to uncover27
heterogeneity of the type analysts increasingly attempt to uncover with latent class structures.28
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