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Abstract

Understanding the constraints that individuals face during their spatial choices is important from a policy
perspective. Such constraints, however, are often overlooked in the choice set generation process during model
development. In order to address that gap, the current study proposes a probabilistic choice set formation
based on Manski’s framework assuming that the actual choice set of an individual is latent (unobserved).
Though latent class models with heterogeneous choice sets have been used previously in the context of
mode and route choice, their application in the context of spatial choices have been hindered due to the
inherently large choice sets making the problem computationally intractable. To address this issue, we propose
to computationally simplify the problem by utilising the geography-derived notions of Activity Spaces to
delineate a range of potential choice sets per individual helping us to capture both issues of spatial awareness
and time-space constraints. In order to account for the latent nature of the true choice set, we propose
a Latent Class Choice Modelling (LCCM) framework to allocate the individuals probabilistically into the
different resulting choice sets, with each class having a different choice set and a different set of parameters.
Thus the LCCM is able to capture heterogeneity in the choice sets and in the sensitivities, at the same time.
The proposed LCCM framework is empirically tested on joint mode and shopping destination choices captured
through a GPS smartphone application. It is compared to a base MNL model estimated on the global choice
set, an LCCM capturing heterogeneity only in the sensitivities and a LCCM with latent consideration choice
sets, similarly to the proposed model, but with generic parameters across classes. Our proposed specification
is able to outperform all of the remaining models, while also providing insights on the factors affecting
individuals to be constrained in their location choices across space hinting to cases of spatial cognition, the
importance of the home and workplace geography and the individual’s socioeconomic status. Such insights
can be important for developing more behaviourally realistic models that can be used by planners and policy
makers to formulate more effective measures that better relate to the underlying population. Furthermore,
the analysis provides insights into the discrepancies that can emerge by accounting for latent consideration
sets in willingness-to-pay measures and demand elasticities, which could have significant implications in the
effectiveness of policy measures.
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1. Introduction

Individuals face constraints during their decision making process. In the context of daily mobility choices,
those constraints can refer to either time-space constraints and/or limited spatial awareness, among others.
Time-space constraints can arise from the need to participate in specific activities in specific locations and for
specific durations, i.e. travel to workplace and stay there for a duration of 8 hours, which limits the ability of
the individuals to equally evaluate every possible location for shopping and other discretionary activities
before, during or after working hours. On the other hand, spatial awareness or the lack of it could be caused
as a result of the regularity of daily mobility patterns, which reinforces travelling within the already familiar
geographical space.

Despite being often overlooked, it is important from a policy perspective to uncover those latent constraints
from the data for the purpose of proposing more effective policy measures suitable for addressing the needs
and intricacies of the underlying population. Furthermore, there is value in understanding the influence of
various sociodemographic characteristics in the formation of those constraints or phrase it in a different way,
identifying what could be the most likely characteristics of the individuals facing each specific constraint. An
example of the derived value from such an analysis, could be the identification of instances of social exclusion
(Schönfelder and Axhausen, 2003) or the potential presence of very restrictive space-time constraints that
prevent individuals from exploring a wider range of alternatives for their daily choices.

Discrete choice modelling (DCM) has been an important tool for policy making since the seminal work of
McFadden (1973) and the development of the Multinomial Logit (MNL) model for understanding individual
mobility behaviour. The MNL model has a strong grounding on microeconomic theory postulating that
individuals will choose the alternative that maximises their utility for a specific choice task among a set of
alternatives, also known as the choice set. Traditionally, a DCM is estimated under the assumption that
individuals will consider and equally evaluate all alternatives in the choice set. There have been attempts,
however, aiming to relax that assumption acknowledging the fact that not only all alternatives might not be
available to all individuals, such as making a car trip for individuals with no car access in their household,
but they might also not be considered by everyone, as well, such as making a large distance trip by walking
or choosing to go for shopping in a store that is unknown to the individual. Assigning an unrealistic choice
set for model estimation is yet another case of model misspecification as noted in Williams and Ortuzar
(1982), who emphasised the potential adverse effects arising from that, such as biased estimates and incorrect
choice probabilities. Gaudry and Dagenais (1979) demonstrated that accounting for captive decision makers
(individuals who choose only a specific alternative) will have a significant impact on the estimated market
shares. Li et al. (2015) have also showed the potential biased welfare measures that could be caused as a
result from a choice set misspecification on simulated data.

Several studies mainly originating from consumer behaviour research have suggested that decision makers
utilise heuristic processes to segment the alternatives into a range of cognitive subsets, unobserved to the
analyst. According to Punj and Srinivasan (1989), the global choice set, i.e. all alternatives of the case study,
such as transport modes for a mode choice model or activity locations for a destination choice model, can
be decomposed into two different subsets, an awareness and a consideration set (Howard and Sheth, 1969;
Wright and Barbour, 1977; Pagliara and Timmermans, 2009; Capurso et al., 2019). Awareness set is a subset
of the global choice set, which includes the alternatives the individuals are aware of due to various reasons,
such as past experience, familiarity, word of mouth etc. The consideration set is a subset of the awareness
set and it is the final set of feasible alternatives that the individuals actually evaluate during their decision
making process. In a spatial context, the respective terms of spatial information fields and spatial usage fields
have been proposed by Potter (1979). As such, spatial information fields contain the activity locations the
individual is aware of (awareness set), regardless if she has ever travelled to those places, while spatial usage
fields are a subset of the former containing the locations that have been visited and are actively considered by
the individual for conducting her activities (consideration set) (Timmermans et al., 1982). Therefore, there
have been studies in the literature suggesting that choice models should be estimated using the consideration
set instead of the common practice of simply using the global choice set.

Several approaches have been proposed over the years for defining alternative availability/consideration.
A usual approach is the availability to be exogenously defined using deterministic thresholds based on the
analyst’s assumptions and the observations in the data, e.g. walking is not considered for trips of distances
above the maximum observed walking distance in the data (Calastri et al., 2019; Hasnine et al., 2018;
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Tsoleridis et al., 2022). A tour-based approach has also been proposed to account for feasible constraints in
terms of mode availability, such as the need for a driver to return her car back home at the end of the tour
(Tsoleridis et al., 2022). Contrary to that, a behaviourally richer framework was proposed by Manski (1977)
suggesting that the probability of individual n choosing alternative i from a consideration choice set C can
be decomposed into a probability of choice set C being the actual choice set considered and a probability of
choosing alternative i conditional on belonging in the consideration set C from a set of S possible non-empty
choice sets, as shown in Equation 1.

Pin(C) =
S∑

s=1
Pn(i|Cs)P (Cs) (1)

Manski’s framework requires a complete enumeration of all possible combinations of alternatives forming
potential S non-empty choice sets. That number of combinations increases rapidly with the number of
alternatives J , as 2J − 1, making this approach computationally infeasible for choice contexts with a large
number of alternatives, such as in a spatial choice model. In fact, several implementations of Manski’s
probabilistic choice set formation have been performed, but the vast majority of them is limited in a mode
choice context (Swait and Ben-Akiva, 1987; Ben-Akiva and Boccara, 1995; Calastri et al., 2019; Capurso et
al., 2019), which generally offers tractable and well-defined choice sets. To simplify the problem, deterministic
availability of alternatives can be initially defined in terms of their feasibility. Examples include, defining
car as unavailable for individuals with no car in their household in the context of mode choice or excluding
routes involving detours above a certain threshold from the habitual route in the context of route choice.
Probabilistic availability can thus be incorporated only to previously defined feasible alternatives to account
for the uncertainty of the analyst, such as the maximum distance for walking to be considered as an alternative
(Swait and Ben-Akiva, 1986) or the spatio-temporal constraints associated with the route choice (Kaplan and
Prato, 2012).

One of the first operational implementations of Manski’s framework was the logit captivity model of Swait
and Ben-Akiva (1986), who proposed a probabilistic choice set generation framework to account for captive
decision makers on mode choice for commuting trips. That specification presents a simplified version of a
probabilistic choice set generation model in which the number of non empty choice sets is restricted to choice
sets of only one alternative (captive individuals) and choice sets including all feasible alternatives (individuals
free to choose). That study also laid the foundations for the more general Independent Availability Logit
(IAL) model proposed in Swait and Ben-Akiva (1987) assuming that the inclusion of one alternative in the
choice set is independent of the remaining alternatives, a necessary assumption to make the specification
computationally tractable.

Several attempts were made over the years to approximate Manski’s framework, while also relaxing its
computational complexity, such as the Implicit Availability/Perception model of Cascetta and Papola (2001)
and the Constrained Multinomial Logit (CMNL) model Martinez et al. (2009) incorporating additional terms
in the utility function to capture latent constraints. Specifically, the CMNL model includes penalties in the
utility function for alternatives exceeding certain attribute thresholds. Despite the authors suggesting that
their approach is an approximation of Manski’s model, Bierlaire et al. (2010) highlighted some limitations of
the CMNL as its inability to produce unbiased estimates on simulated data, contrary to the IAL specification
of Swait and Ben-Akiva (1987). Similar conclusions were derived from the study of Li et al. (2015), as well,
regarding the comparison of CMNL and IAL models. In the same study, the authors also showed that models
capable of uncovering taste heterogeneity, such as MNL models with sociodemographic interactions, mixed
Logit or Latent Class Choice Models, will also produce biased estimates and welfare measures, since the
choice set formation process is confounded in the sensitivity heterogeneity that is being captured. More
specifically, the authors demonstrated -using simulated data- that the IAL specification is the only one
capable of producing unbiased estimates in the presence of a latent price threshold.

Consideration of alternatives was traditionally understood by asking additional information to the decision
makers (Ben-Akiva and Boccara, 1995; Kaplan and Prato, 2012). A prominent example in the literature is
the study of Ben-Akiva and Boccara (1995), in which answers to relevant questions were used as indicators
for defining latent variables regarding the consideration of alternatives. Nonetheless, with passively or even
semi-passively collected Revealed Preference (RP) data, such as a GPS-based trip diary, only the observed
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choice is known without having any additional information on the non-chosen alternatives and the reasons
for not choosing them. Hence only assumptions can be made about the extend of the considered choice set
and the non-chosen alternatives belonging to that. A relevant example can be found in the study of Calastri
et al. (2019), where the authors utilised a GPS dataset to specify a Latent Class Choice Model for mode
choice with a range of classes adhering to specific combinations of mode alternatives

Contrary to the examples presented so far, a spatial choice model and more specifically a destination choice
model of discretionary activities, e.g. shopping, is characterised by large choice sets, which could be comprised
of traffic analysis zones or geographic zones (e.g. Middle Super Output Areas - MSOAs), general shopping
areas, shopping malls or even specific parcels and stores depending on the level of spatial granularity offered
by the utilised dataset and the level of detail required by the analyst. Sampling of alternatives has been
proposed as a method suitable for reducing the computational complexity for choice models with large choice
sets (Guevara and M. Ben-Akiva, 2013a; Guevara and M. Ben-Akiva, 2013b; Tsoleridis et al., 2021). Besides
the computational advantages, however, sampling of alternatives does not account for the latent consideration
of alternatives during the decision making process. Therefore, in order to account for the potential presence
of latent choice set formation mechanisms in a spatial context, certain simplifications might be necessary
to make the problem computationally tractable. To the best of our knowledge, only the study of Thill and
Horowitz (1997b) has attempted to develop a probabilistic choice set formation specification for a spatial
choice model first using simulated data and then applied on the real-world context of shopping destinations
for home-based trips (Thill and Horowitz, 1997a). Their approach relies on the notion that individuals have
to make destination choices, while being subject to latent time constraints, therefore the set of destinations
under consideration will depend on each individual’s time budget. The simplification applied in that study,
relative to the IAL specification of Swait and Ben-Akiva (1987), is that individuals are probabilistically
allocated into a finite number of exogenously defined time thresholds as concentric circles from their home
locations within which reachable destinations form the respective consideration sets. Their specification which
is effectively an LCCM specification –although not stated as such– is able to outperform a base unconstrained
MNL model. Nonetheless, it is also worth mentioning that the specification of Thill and Horowitz (1997a)
does not account for differences in sensitivities across classes, thus having the possibility of confounding the
presence of latent choice set formation constraints with individual unobserved heterogeneity. Furthermore, no
additional covariates were used in the allocation of individuals to the specified time thresholds limiting our
ability to link latent constraints with specific sociodemographic attributes that could lead to better informed
policy measures.

In the current study, we follow a similar approach to Thill and Horowitz (1997a), but we differ our
utilised proxy measures of latent constraints by considering the coexistence of spatial awareness/cognition
and space-time constraints. The geography-derived notions of Activity Spaces (Hagerstrand, 1970) in the
form of detour ellipses (Justen et al., 2013; Leite Mariante et al., 2018; Tsoleridis et al., 2021) and standard
deviational ellipses (Brown and Moore, 1970; Horton and Reynolds, 1970; Horton and Reynolds, 1971;
Yuill, 1971; Schönfelder and Axhausen, 2003; Schönfelder and Axhausen, 2004; Schönfelder and Axhausen,
2010; Manley, 2016) are utilised to define proxy measures of trip-specific space-time and individual-specific
spatial awareness/cognition constraints, respectively. Our proposed specification, is compared against a base
MNL model estimated using a choice set of feasible alternatives based on logical checks and deterministic
exogenous thresholds and a base LCCM specification estimated again using the same choice set and capturing
heterogeneity on the sensitivities across classes. Contrary to that base LCCM, our approach is capturing
heterogeneity both in the sensitivities and the consideration choice sets at the same time. More specifically,
our proposed specification includes three classes each with its own choice set. The choice set of class a
includes alternatives within the estimated detour ellipses adhering to trip-specific space-time constraints. The
choice set of class b includes alternatives, within both the estimated detour ellipses as before, but also within
the individual-specific standard deviational ellipses thus capturing additional spatial cognitive constraints
of the individuals. Finally, class c has the same choice set as the base MNL and the base LCCM models
including all feasible alternatives, thus representing individuals that do not face any of the two aforementioned
latent constraints. In addition, each of the three classes has a range of class-specific parameters to avoid
confounding unobserved heterogeneity among individuals with the presence of latent choice set formation
mechanisms, while also sociodemographic attributes are used to assist the allocation of individuals to each
class, thus addressing some of the limitations identified in the work of Thill and Horowitz (1997a). An
equivalent LCCM specification with different choice sets, but with generic parameters across classes and only
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constants in the class allocation, is also utilised for comparison purposes and to highlight the discrepancies in
the two approaches.

According to the description above, the proposed specification is a similar case to the logit captivity
model of Swait and Ben-Akiva (1986), where individuals are either captive to their space-time constraints,
their spatial awareness or are free to choose form all the range of available and feasible alternatives being
more inclined to explore the space around them. The proposed approach is empirically tested on a joint
mode-destination choice model of shopping activities utilising a 2-week GPS trip diary. The model’s objective
is to jointly capture individual behaviour regarding the choice of an intermediate shopping location, as well
as the modes of the two trip legs travelling to and from that location. The results suggest that our proposed
LCCM framework is capable of uncovering significant latent constraints, which also leads to significant model
fit improvements compared to the base LCCM specification. More importantly, however, a specification like
that is able to shed light into the types of individuals that are more likely to face certain latent constraints
during their daily decision making process, thus deriving valuable insights for more effective policy measures
able to account for those constraints.

The remainder of the paper is as follows. In the second chapter, a description of the different forms of
activity spaces is performed. In the third chapter, the methodological frameworks of the proposed model
specifications are thoroughly explained, while in the following chapter the data used in the practical application
is described. In the fifth chapter, the modelling outputs and their interpretation are highlighted. Finally, in
the last chapter the conclusions and limitations of the study are summarised and recommendations for future
research are suggested.

2. Forms of Activity Spaces

The notions of Activity Spaces (AS) originate from the fields of time-space (Hagerstrand, 1970) and
behavioural geography (Brown and Moore, 1970; Horton and Reynolds, 1970; Yuill, 1971) and they have
been studied extensively in different heterogeneous research areas since their inception with an emphasis on
understanding when and where activity participation occurs and identify potential reachable opportunities
given the remaining time budget (Schönfelder and Axhausen, 2004; Schönfelder, 2006; Schönfelder and
Axhausen, 2010; Kamruzzaman and Hine, 2012; Lam et al., 2018). They are mainly used as a measure of
describing the spatial distribution of visited locations and they incorporate a notion of individual spatial
awareness (Manley, 2016) by providing invaluable information about the exposure to specific locations
and activities that individuals might perform based on their usual mobility patterns and their time-space
constraints. Due to the vast range of studies and application domains, there are several different forms of AS
proposed in the literature depending on the aspect under examination in each case and the level of analysis.
In a systematic review, Smith et al. (2019) summarised the different AS forms, which among others (such as
convex hulls, daily path areas, kernel densities, interpolation etc.), include the following:

• Ellipses formed around two fixed points of a specific trip chain, labelled here as Detour Ellipses (DEs)

• Ellipses formed around the observed trips of an individual during a survey period, most commonly
known as Standard Deviational Ellipses (SDEs)

In order to produce generalised results, representative of the sample in our dataset, we refrained from
using the observed Activity Spaces of both forms, Detour Ellipses and Standard Deviational Ellipses, and
used estimated Activity Spaces instead as proxy measures of latent constraints entering our behavioural
specifications. To accomplish that, we estimate a range of continuous regression models using specific
structural components of the Activity Space as dependent variables.

2.1. Detour Ellipse
The first type of ellipse utilised in this study aims to capture the reachable destinations based on trip and

individual characteristics and the location of the following activity. Several approaches have been proposed in
the literature to define what is commonly known as Potential Path Areas (PPAs) based on Hagerstrand (1970)
work on time-space geography. Those approaches typically take into account the available net time between
the fixed activity locations and an average travel speed (Kamruzzaman and Hine, 2012) or real network travel
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times based on the time of day in more advanced cases (Miller, 1991) to identify the intermediate locations
that are potentially reachable within those time budgets (Lam et al., 2018). A slightly different approach is
taken in the current study, where we propose the use of Detour Ellipses between fixed locations to capture
the intermediate reachable areas. A Detour Ellipse (DE) is a type of an ellipse formed around two fixed
locations, the foci of the ellipse, which are also referred to as ‘pegs’. More specifically, a DE is based on the
Detour Factor (DF) defined as the ratio of the sum of the distances between O(previous origin)-S(shopping
destination) and S(shopping destination)-D(next destination) over the distance between O-D, as defined in
Equation 2 (Justen et al., 2013). In other words, a DF measures the deviation that an individual is willing to
make to reach an intermediate shopping location S between the O-D (Leite Mariante et al., 2018) and it
serves as a measure of spatial dependence among destinations in a trip/activity chain. It is also clear that
DF ≥ 1 should always hold in cases where O and D are different.

DF = lOS + lSD

lOD
(2)

Previous studies have used fixed DFs for intermediate locations to be considered along observed O-D
paths (Cascetta and Papola, 2009). Such an example is presented in the study of Newsome et al. (1998),
who defined DEs based on the furthest visited intermediate location between fixed home and work locations.
That approach, however, fails to take into account the influence of the total OD distance on the resulting
DF, as it can be easily understood that longer OD paths will lead to smaller DFs due to the presence of time
constraints for reaching both the intermediate and the following location D. That means that the longer
the OD path the smaller the time budget available to the individuals to deviate further away from that
path. That relation between DF and OD distance has been taken into consideration in Justen et al. (2013),
although their approach is limited by the fact that only average values per DF percentile are considered,
while trip-specific and sociodemographic attributes that could have an impact on the formation of DEs have
not been taken into account.

In the current study, we make a distinction between trip chains with an intermediate shopping location S
between an initial origin O and a following destination D, referred to as OSD, and simple tours in which
individuals travel for shopping to a location S and then return back to their origin O, referred to as OSO
trip chains in the remainder of the paper. The detour factors of OSD trip chains are always greater than
1.0 and they are exactly equal to 1.0 only in the extreme case of choosing a shopping location S directly on
top of the OD path. Therefore, the estimated detour factors from that model will need to adhere to that
restriction. In order to accomplish that, the dependent variable, in that case the observed detour factors,
are transformed accordingly as yi − 1 and are assumed to follow a log-normal distribution to ensure the
estimation of strictly positive values, as shown in Equation 3.

log(yi − 1) = Σbxi
xi + σ (3)

where xi is a vector of mode-specific, trip-specific (including the straight OD distance), locational and
sociodemographic explanatory variables and bxi are the respective parameters to be estimated. The disturbance
term for the log-transformed DF is assumed to follow a normal distribution with N(0, σ), where σ is the
standard deviation that is estimated alongside the rest of the parameters

For OSO trip chains, a different modelling approach was developed by using the straight distance to the
shopping location S as the dependent variable and use it to define the estimated radius of a circle from the
respective O. In that case as well, in order to ensure only positive estimated values, the dependent variable is
assumed to follow a log-normal distribution. As a result, the modelling formulation of Equation 4 is proposed,
where yi is the observed straight OS distance and as previously xi is a vector of mode-specific, trip-specific,
locational and sociodemographic explanatory variables and bxi

is a vector of parameters to be estimated.

log(yi) = Σbxi
xi (4)

2.2. Standard Deviational Ellipse
The second type of Activity Space aims to capture the spatial awareness of the participants. The Standard

Deviational Ellipse (SDE) is proposed for that purpose, which originates from the fields of behavioural and
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Figure 1: Weighted standard deviational ellipse around observed/visited destinations (Schönfelder, 2003)

social geography (Brown and Moore, 1970; Horton and Reynolds, 1970; Yuill, 1971). The SDE captures
the spatial dispersion of the visited locations (observed latitude/longitude coordinates) of an individual
and has been proposed as a measure of capturing the exposure to opportunities as a consequence of daily
activities (Horton and Reynolds, 1971). In that sense, a SDE provides additional information on the individual
awareness of certain destinations, that the Detour Ellipse and other forms of Potential Path Areas are not
able to provide. Activity spaces formed by SDEs are considered a subset of a larger latent awareness space
(Brown and Moore, 1970; Patterson and Farber, 2015) or spatial information field (Potter, 1979) suggesting
that individuals would likely possess spatial knowledge that far exceeds the SDE formed around the observed
destinations due to word of mouth and the usually limited durations of surveys.

An SDE is generally considered the two-dimensional equivalence of a standard 95% confidence interval.
The mathematical process of defining an SDE, as described in Yuill (1971), involves the calculation of the
covariance matrix of the latitude/longitude coordinates and the calculation of the rotation matrix leading to
the final definition of the ellipse’s perimeter (Tsoleridis et al., 2021). In (Figure 1) the main components of
an SDE are depicted, such as the ellipse’s major axis indicating the axis of major dispersion, which can also
be considered as the regression line of latitude/longitude coordinates, the ellipse’s orientation capturing the
slope of the regression and the sign of the correlation sign among the coordinates and finally the arithmetic
mean or else the centroid of the ellipse capturing the centre of gravity of the individual’s usual movements
(Schönfelder, 2003). Destinations that are outside of an SDE are considered outliers relative to the usual
movement areas of an individual.

Several measures can be extracted from a SDE that describe the mobility patterns of an individual, such
as its shape (minor to major axis ratio), size (area, number of polygons located within etc.), orientation
and eccentricity (Yuill, 1971). An ellipse is a generalised form of a circle with one axis (major axis) more
elongated than the other (minor axis). In the case of a very small minor axis close to 0, the ellipse resembles
a straight line, while in the case of equal axes the ellipse takes the form of a circle. The ratio of minor/major
axis, b

a , can provide an initial indication of time constraints or spatial exploration. For instance, an ellipse
with a small b

a can characterise a person with significant time constraints that does not have the freedom or
the willingness to roam around, and the opposite can be said for an ellipse resembling with b

a close to 1.0
resembling a circle.

Temporal factors and individual sociodemographic characteristics can also be taken into account, such
as examining weekday/weekend differences on the stability of SDEs among full-time and part-time workers
(Srivastava and Schoenfelder, 2003; Smith et al., 2019). Time also plays an important role in the evolution
of the Activity Spaces providing opportunities to the individuals for more spatial search and exposure to
the surrounding area, thus increasing their spatial cognition. SDEs might stabilise after a certain period of
time, but significant longitudinal data will be required in order to capture that. Schönfelder (2006) used
longitudinal data from traditional trip diaries to study the impact of time on the formation of activity spaces
(SDEs). He concludes that, in general, datasets of longer durations (around 6 weeks) than the common ones
(1-2 weeks) are necessary for SDEs to reach stability. That finding, however, could be different for emerging
data sources, such as GPS trip diaries, which generally offer a more comprehensive depiction of individual
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Table 1: Literature timeline of Activity Spaces and Choice Modelling dealing with choice set formation

Year Activity Spaces Choice Modelling
1970 Hagerstrand;

Brown and Moore;
Horton and Reynolds

1971 Horton and Reynolds;
Yuill

1979 Potter Gaudry and Dagenais
1982 Williams and Ortuzar
1986 Swait and Ben-Akiva
1987 Swait and Ben-Akiva
1991 Miller
1995 Ben-Akiva and Boccara
1997 Thill and Horowitz (a);

Thill and Horowitz (b)
1998 Newsome et al.
2003 Schönfelder;

Srivastava and Schönfelder
2004 Schönfelder and Axhausen
2006 Schönfelder
2009 Cascetta and Papola
2010 Schönfelder and Axhausen
2013 Justen et al.
2015 Patterson and Farber Li et al.
2018 Leite Mariante et al.
2019 Smith et al. Calastri et al.
2021 Tsoleridis et al.

mobility behaviour by capturing a higher number of smaller trips during the day. A general timeline of the
evolution of Activity Space literature and the key papers of Choice Modelling mainly dealing with the subject
of choice set formation is presented in Table 1 along with the studies where those two were merged together.

In order to reconstruct estimated SDEs per individual we need to estimate a range of models referring
to several important structural components of an SDE (see Figure 1). Specifically, we need to estimate the
distance disthc and the angle θhc between the home location h and the ellipse centroid c, the orientation θsde

and the total area of the ellipse Asde, as well as the shape of the ellipse defined as the ratio between the small
and large axis ( bsde

asde
). Therefore, five continuous models have been developed, in total, to assist with the

reconstruction of estimated activity spaces. From the estimated distance disthc and angle θhc, the centroid of
the estimated confidence ellipse per individual can be defined. Following that, we are using the estimated
minor/major axis ratio and the estimated area to define the shape of the ellipse and finally the estimated
orientation of the ellipse to complete its mapping over space.

The models for disthc and Asde are specified as linear regression models with log-normally distributed
dependent variables similarly to the OSO model previously described in Equation 4. To estimate the models
referring to the angles, i.e. for the angle between home-centroid θhc and the ellipse orientation θsde, the
predicted values had to be restricted between 0o − 360o. In order to achieve that, the dependent variables
were scaled between 0-1 by dividing them with 360. Then the scaled angles were used as the dependent
variables in beta regression models. Beta regression is a type of model suitable for modelling continuous
variables with values between 0 and 1 (Ferrari and Cribari-Neto, 2004). A similar approach was followed for
the specification of the minor/major axis ratio bsde

asde
model, where the dependent variables should also take

values only between 0-1. The mean µ of the dependent variable y can be calculated as µ = E(y) = Σbxi
xi

and the variance as V ar(y) = µ(1−µ)
1+ϕ , where ϕ is a precision parameter with a larger precision parameter

leading to smaller variance (Ferrari and Cribari-Neto, 2004).
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3. Methodology

The MNL model has been the main workhorse of DCM and has been applied in numerous studies
of behavioural modelling in the fields of transport, environment and health, among others (McFadden,
1973; Domencich and McFadden, 1975; McFadden, 1978; Ben-Akiva and Lerman, 1985; McFadden, 2000).
According to that specification, an individual n will choose among a set of alternatives J , the alternative i
that provides the highest utility for a specific choice task t. The utility Uint is a latent construct comprised
of a systematic part Vint and a disturbance term ϵint as Uint = Vint + ϵint, assuming an additive disturbance
term. Different distributional assumptions regarding the disturbance term will yield different specifications,
with the assumption of a Type-I Extreme Value distributed ϵint leading to an MNL model.

In an MNL model, individual heterogeneity can be captured by specifying interaction terms with
sociodemographic attributes as shifts from the base level of specific parameters. More advanced specifications
are necessary, however, to account for unobserved heterogeneity, such as mixed Logit (McFadden and Train,
2000) and LCCM (Kamakura and Russell, 1989). In the mixed Logit model, heterogeneity is captured in
a continuous manner by assuming that sensitivities across individuals follow a certain distribution with
normal, uniform or log-normal distributions being the most commonly used ones. The mixed Logit has been
widely used for the purpose of capturing heterogeneity in the sample and it is considered the most flexible
logit specification (McFadden and Train, 2000; McFadden, 2000). Mixed Logit models usually require the
use of simulation to estimate the parameters of the specified distributions and a large number of draws is
usually needed to reach a certain level of estimation stability, which significantly increases the estimation
times. Furthermore, that means that the estimated parameters largely depend on the analyst’s distributional
assumptions, which can have adverse effects in the case of behaviourally inaccurate ones. On the other
hand, LCCMs capture heterogeneity by assuming that individuals in the sample can be probabilistically
allocated into a discrete and finite number of latent classes based on their sociodemographics and their choice
behaviour.

Three consideration sets are constructed per individual and choice task after the creation of the mode-
specific Detour Ellipses and individual-specific Standard Deviational Ellipses. Individuals can belong to each
consideration set with a positive probability, thus acknowledging the latent nature of the true choice set. The
probability of belonging to a consideration set C is modelled as a multinomial logit, as shown in Equation
5. The hypothesis behind this specification, is that the individuals in the sample are likely to be subject to
either time-space constraints for the specific trip chain (class a) or to be constrained due to issues of spatial
awareness (class b) or alternatively to be free to consider alternatives from the global choice set (class c)
during their choice of mode and shopping location. As such, the proposed LCCM specification allocates
individuals probabilistically into three classes, with each class having a different choice set. The choice set
of class a includes mode-destination alternatives (feasible in terms of mode) that are located within the
estimated mode-specific Detour Ellipses, therefore capturing individuals who are captive to their time-space
constraints. The choice set of class b includes alternatives within the merged area of the estimated Detour
and Standard Deviational Ellipses, thus capturing individuals captive to their spatial awareness. Finally, the
choice set of class c includes all feasible alternatives in the global choice set per trip.

πC = eδc+γcxn∑C
r=1 eδr+γrxn

(5)

According to this framework, the probability of choosing an alternative i is calculated based on the logit
function if alternative i belongs to consideration set C and it is 0 otherwise, as shown in Equation 6. Finally,
the unconditional likelihood of observing a sequence of choices for individual n is calculated by weighting the
class-specific conditional probabilities for alternative i with the class membership probabilities πn(C) across
G potential classes, i.e. non-empty choice sets, which in that case is limited to 3, as shown in Equation 7.
The coefficients of both model components are jointly estimated by using Maximum Likelihood Estimation.

Pi|C =


eVi∑J

j
eVj

, if i ∈ C

0 , otherwise
(6)
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Pni =
∑
C∈G

πn(C)Pni|C (7)

Further complexity can be added to the proposed specification in order to capture additional heterogeneity
within each class by specifying a 2-stage LCCM similar to the study of Song et al. (2019). Nonetheless, that
is out of the scope of the current and it is left as an idea for potential future research.

The utility function of the behavioural model follows the size variable specification proposed in Daly (1982)
and specifically the one implemented in a joint mode and destination choice model presented in the study of
Kristoffersson et al. (2018) combining mode preferences with shopping destination attraction. According
to that, the systematic utility Vmd for mode m and destination d presented in Equation 3 is comprised of
several parts referring to mode- and destination-specific Level-of-Service (LOS) variables, locational variables
capturing the quality of each destination and variables capturing its size, also known as size variables. That
size variable specification was proposed to account for the utility of the elemental destinations within the
aggregated destination alternatives.

Vmd =
∑
r∈R

brxrmd +
∑
q∈Q

bqyqd + ϕlog(Sd) (8)

The first component includes mode- and destination-specific variables that best describe the trip to
destination d with mode m, such as travel time and cost for motorised modes and distance for active travel, as
well as ASCs capturing inherent preferences for specific modes/destinations and sociodemographic interactions.
With this, xrmd is the r-th LOS variable for mode m and destination d. The second component captures the
impact (positive or negative) that certain characteristics could have on the utility of a specific destination,
such as available parking space for car users, where yqd is the q-th quality variable for destination d. The final
component in Equation aims to capture the attraction or the “size” of a destination d, Sd and is specified as
a composite logarithmic term as shown in the following Equation :

Sd = a1d +
∑
r>1

exp(γr)ard (9)

where a1d is the attraction attribute used as a base with a γ parameter normalised to 1.0, ard are the
additional attraction attributes of destination d relative to the base attribute, and γr are the parameters
to be estimated capturing the effect of those attributes on the attraction of the target destination. The γr

parameters are constrained to be positive by using an exponential transform.
The log-size parameter ϕ is usually kept fixed to 1.0 ensuring that a change in the size of a destination

will affect proportionately its utility. Therefore, the choice probabilities will not be affected by the zoning
discretisation that usually forms the destination alternatives. Kristoffersson et al. (2018), however, proposed a
freely estimated ϕ, which can lead to estimated values different than 1.0, leading to a behavioural interpretation
on the formation of destination alternatives. Specifically, in the case of ϕ < 1, the authors suggest that the
model captures significant correlation among the utilities of the elemental alternatives within each aggregate
destination alternative.

4. Data

For the practical implementation of the proposed approach, a 2-week GPS-based trip diary captured
by a smartphone application is utilised. The GPS trip diary was collected as part of the research project
“DECISIONS” conducted by the Institute for Transport Studies, University of Leeds, between October
2016-March 2017. Besides the utilised GPS trip diary, the “DECISIONS” project aimed to capture a range
of different aspects of individual behaviour, such as in-home and out-of-home activity participation, energy
appliance usage and the effect of social networks. The GPS trip diary captured the daily trips over the
survey period with the use of a smartphone application, which was tracking the traces of the participants.
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Figure 2: User interface of smartphone application used for the trip diary

After the end of each trip, the participants had the chance to correct the information of the logged trip and
provide additional information regarding the chosen mode and the type of the activity at the destination (trip
purpose). A depiction of the application’s interface is presented in Figure 2. A background household survey
was also conducted in order to capture several important sociodemographic attributes of the participants,
such as their age, their household composition, the availability of mobility tools (e.g. private vehicles and PT
season ticket ownership) and their personal and household income, among others. A more detailed description
of the data collected during the “DECISIONS” project and its various sub-modules is provided in Calastri et
al. (2020).

The initial GPS trip diary included trips captured throughout the UK, but the vast majority of them
were in the region of Yorkshire and more specifically in and around the city of Leeds. Therefore, the final
dataset used for the subsequent analysis included only individuals residing within the local authority of Leeds.
As previously described, the purpose of the analysis is to understand where the individuals are more likely
to travel in order to cover their daily shopping needs and how to travel there and to the following activity
location, thus acknowledging the interrelations between mode and destination and among the locations of
consecutive activities. As a result, only the shopping trips and their following trips were selected for the
subsequent analysis resulting in a final dataset of 1,541 shopping-following trip chains performed by 270
unique individuals. The analysis is conducted at the trip chain level, 66% of which are OSD trip chains
and the remaining 34% are OSO trip chains. Shopping trips are comprised of three subcategories, namely
grocery (82%), clothes (12.7%), and other types of shopping (5.3%), mainly for durables. The vast majority
of following trips were trips going home (61.5%), while there was a small percentage of 9.3% of a consecutive
shopping trip to a different shopping destination. The alternative modes of transport included car, public
transport (PT) – as a combination of bus and rail – and walking.

The high spatial resolution of the GPS traces, despite the benefits, it also provides additional challenges
for their analysis compared to traditional data sources. Therefore, because each GPS trace is a unique
pair of latitude and longitude coordinates, a clustering approach had to be developed to identify unique
activity locations. Hierarchical Agglomerative Clustering (HAC) was utilised for that purpose as it does
not require any a priori assumptions about the number of the required clusters. HAC, however, required a
specific distance threshold to be defined to assign points within that threshold in the same cluster. A distance
threshold of 200m was chosen to ensure a small distance difference (approximately 100m) of points allocated
in the same cluster of an activity location per individual. The implementation of HAC helped us to define
unique home and work locations based on the purposes of trips going to those destinations in order to further
define daily tours and sub-tours. In cases, where trip purposes were not enough to define home and work
locations, additional information on time of day and activity duration was used, such as assigning a work
location to a cluster if an individual spends the majority of working hours (09:00-17:00) there. The home
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Figure 3: Home locations segmented in quartiles relative to their position from Leeds CBD (black circle)

locations of the individuals were also segmented according to their position relative to Leeds Central Business
District (CBD) into four quartiles, as depicted in Figure 3. Out of the 270 individuals, 55 (20.4%) live in
quartile 1, 136 (50.4%) in quartile 2, 35 (12.9%) in quartile 3 and 35 (16.3%) in quartile 4.

In order to take advantage of the high spatial resolution provided by the GPS data, the definition of
shopping destination alternatives was not limited to the usual UK geographical boundaries, but were defined
at a more granular level by clustering the observed elemental shopping destinations. HAC was implemented
again with a distance threshold of 800 metres among the shopping trip destinations. The cluster centroids
defined as the mean of the latitude/longitude coordinates of the points in each cluster were then used to
replace the original destination points of each shopping trip belonging to the cluster. The main goal of
choosing an appropriate distance threshold was to ensure a small average distance difference between the
original destination points of a cluster and its centroid. After trying different distance thresholds between
500m-1,000m, a 800m distance threshold was selected resulting in small average distance differences of around
4-5 minutes of walking (assuming a 5 km/h average walking speed). As a final step, a 400m buffer was
defined around each cluster centroid to create the aggregate shopping areas used as destination alternatives
in the analysis. This process resulted in the definition of 176 general shopping areas around the region of
Yorkshire, capturing 76% of the retail polygons located within the Local Authority of Leeds, as defined in
OpenStreetMaps (OSM).

Further steps were necessary in order to enrich the initial dataset with additional information important
for behavioural modelling. Initially, the dataset contained only the self-reported travel times/distances for the
chosen modes, however, the values of the unchosen mode alternatives were also required to properly define
the attributes for all alternatives. For that reason, the Bing maps route API1 was utilised to obtain the travel
times and distances for all the modes (car, bus/rail, walking) and for trips starting from each initial origin to
each shopping cluster and from each shopping cluster to each following destination. For consistency reasons,
the travel times/distances of the chosen mode alternatives were recalculated as well to ensure that the data
used for estimation would come from the same data generating process. The total number of queries passed
to the API was 1,627,296 (1,541 trips × 176 shopping destinations × 3 modes × 2 for the current and the
subsequent trip). After that data collection stage, deterministic mode availability was assigned based on
logical feasibility checks of the results obtained from the API, such as cases of short distance PT trips for
which the API returned only walking segments, or in specific cases where car was the chosen mode and the
participant had to return it back home. For that latter case, special attention was given to the stated size of
the party that participated in the trip in order to understand whether the participant of the survey was the
actual driver. As such, if the individual was the only person in a car trip, then she was assigned as the car
driver and all the remaining modes would become unavailable only in the case where the following trip was

1Details can be found here: https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/
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Figure 4: Index of Multiple Deprivation for 2015

to return back home. For other trip purposes for the following trip, it is assumed that the individual is free
to consider all the available modes. On the contrary, if there were more than 1 people participating in a car
trip, then we could not safely assume that the individual was the driver and all the modes would remain
available for the following trip, as well.

Information on travel cost was also missing both for chosen and unchosen modes. Car travel cost was
computed using the UK’s official Transport Appraisal Guidance (WEBTag) specifications for fuel and
operating costs (Department for Transport, 2014). Parking cost was also calculated for trips with destinations
in central areas/high streets across the region of Yorkshire based on information on hourly or fixed parking
costs provided by the respective Local Authorities. Fuel, operating and parking costs were then aggregated
to form a total car travel cost used for estimation. For PT, an average distance-based fare was used for bus
and rail and a total PT cost was calculated per trip based on the distance of the leg performed by bus or rail.
A discount was also applied for trips made by season ticket holders.

Additional locational data were acquired from the Office for National Statistics (ONS) and OpenStreetMaps
(OSM) to be used in the modelling specifications as attraction variables for specific shopping destinations.
Specifically, the total areas of retail, grocery and durable shopping parcels within each aggregated shopping
destination was calculated from OSM together with the total parking areas and the locations of the most
popular retailers per shopping type in the UK market. The population around shopping locations was also
extracted from the Office of National Statistics (ONS) together with Indices for Multiple Deprivation for
20152 (Figure 4), as well as average house prices and percentages of white residents for 2016-2017 in order to
capture instances of spatial inequalities.

The different types of shopping stores among the elemental shopping destinations within an aggregate
destination alternative was also acquired using the OSM categorisation. The purpose of that was to capture
the impact of shopping store variability using Shannon’s entropy (Shannon, 1948; Whittaker, 1949), Hd,
measuring the percentage of the area covered by a specific store type t ∈ T inside a shopping destination
d from a total number of N different store types as shown in Equation 10. Shannon’s entropy is used to
examine whether an increased variability in store types makes a shopping destination more likely to be chosen,
since that would enable the completion of different shopping activities within the same trip.

2Details can be found here: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
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Hd = −
∑T

t=1 (pt ln (pt))
ln N

(10)

In order to capture agglomeration effects and the impact of neighbouring shopping destinations on the
attraction of a target shopping destination, the same information on the aforementioned locational variables
was extracted for additional buffers between 400-1,000m, 1,000-2,000m and 2,000-5,000m from each cluster
centroid, similar to the study of Kristoffersson et al. (2018).

Finally, the impact of the location of the intermediate shopping destination S, in relation to the straight
distance between O and D, was captured by calculating the angles between OS-OD and SD-OD. It is assumed
that shopping destinations, which require a significant deviation from the straight OD path would be less
likely to be chosen compared to others that are in the same direction.

5. Results

In the following, the modelling outputs are going to described starting first with the auxiliary specifications
for OSD and OSO trip chains and then the five models for the structural components of the SDE –namely
models for the distance and the angle between home locations and the SDE centroid, its orientation, its
minor/major axis ratio and its area– before moving on to the main outputs of the proposed LCCM specification.

5.1. Detour Ellipse outputs
The estimates of the Detour Factor and the distance model for the OSD and OSO trip chains, respectively,

described in the following were used to re-create estimated Detour Ellipses for both cases (OSD and OSO trip
chains). The resulting trip- and mode-specific estimated Detour Ellipses, on average, contain 19.5 shopping
locations out of the 176 identified locations within the study area (11.1%).

The Detour Factor model for the OSD trip chains achieves a correlation of 0.72 between observed and
estimated detour factors. The estimated parameters of the corresponding model are presented in Table 2
along with the robust t-ratios to account for the multiple observations per individual (Daly and Hess, 2010).
According to the model, the individuals are willing to take a shorter detour to reach a shopping destination,
when the destination for the next activity is further away indicating the time-space constraints the individuals
are subject to. Choosing walking for the first shopping trip or also travelling by mode combinations of
car-PT, car-walking will result in smaller detours than the base mode combination of car-car. Nonetheless,
the opposite is true when travelling by PT in both trip legs with individuals choosing longer detours. Longer
detours are also predicted for clothes and durables shopping, when the following activity is for education
purposes or the shopping trip is part of a tour with education as its main purpose, for male individuals
and for mostly older ages (above 76 years old). Furthermore, individuals with a household income between
£40,000-£50,000 will also tend to take longer detours, while the higher the average income around the
individuals’ home locations the longer the detours they are willing to choose, as well. Longer detours were
also estimated for individuals living in households of mostly above 3 members, those employed in Healthcare,
Education, Academia or other types of occupations, when the trip occurs during morning weekend hours and
when the are more available parking areas around the shopping location. Contrary to that, smaller detours
are estimated for individuals living together with more than four employed individuals possibly due to the
increased time requirements to accommodate everyone’s daily mobility needs, for part-time workers most
likely due to increased housekeeping responsibilities, for shopping trips during night or early morning periods
during weekdays and for individuals of the smallest household income band (below £10,000).

Moving on to the model for the estimated distances of the OSO trip chains, a correlation of 0.67 was
achieved between observed and predicted distances. The modelling outputs are presented in Table 3, where it
can be seen that mode combinations of car-walking and walking-walking lead to smaller straight distances
to reach a shopping destination compared to the base mode combination of car-car. Shopping for durables
will lead to larger distances mainly due to the more specialised type of stores, which can be located further
away from home locations. Living in households of either 1 or 4 members will lead to smaller distances, while
that is also the case for male individuals, when the shopping trip is part of a tour with work or education
as its main purpose, when the following activity is for social, other purposes or to return back to work
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Table 2: Modelling outputs of the DF model for O-S-D trip chains

Parameters Estimates Rob. t-ratios
Constant -4.7480 -3.62
O-D straigth distance (km) (log) -1.3221 -20.57
Car-PT -0.4283 -1.46
Car-Walking -2.1897 -6.60
PT-PT 0.9615 2.31
Walking-Car -1.4913 -4.24
Walking-PT -0.6923 -2.59
Walking-Walking -1.7347 -7.34
Shopping: Clothes - Other 0.5791 3.22
Household size: 3-4 members 0.4599 3.05
Household size: 5 members -0.9965 -1.46
Household size: 6 members 1.1187 2.58
Other employed household members > 4 -1.8039 -8.44
Part time workers -0.4286 -2.54
Occupation: Healthcare 1.0691 3.77
Occupation: Education 0.2591 1.46
Occupation: Academia 0.4369 1.74
Occupation: Students 0.6211 1.42
Occupation: Other 0.5894 2.81
Time of day: Weekday night -0.4682 -1.65
Time of day: Weekday morning -1.1338 -1.43
Time of day: Weekend morning 0.6974 3.21
Following trip purpose: Groceries 0.3666 1.78
Following trip purpose: Education 2.5978 5.21
Age 25-29 0.3771 1.61
Age 60-65 0.4492 1.50
Age ≥ 76 1.2577 2.96
Parking areas 400m around 0.0186 6.21
shopping destination in 1, 000m2 for car trips
Shannon’s entropy 400m around 0.3833 2.24
shopping destination (log)
Total passengers in shopping trip >1 0.2520 1.73
Houshold income <£10,000 -0.6036 -1.53
Houshold income £40,000-£50,000 0.4140 2.06
Male 0.2854 1.86
Population in 400m around home location in 1,000 people 0.4275 1.56
Average annual income in 400m around home location in £1,000 (log) 1.0374 2.82
Trip part of a tour with main purpose: Education 0.6589 1.44
Sigma 1.9616 33.05
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with the latter mostly referring to short shopping trips from work locations during lunch break. Longer
distances can be expected for trips during the interpeak or during morning hours for retired people and for
engineers, community/social workers, students and those working on management. The model was also able
to uncover that younger and older individuals, specifically those between 25-29 and above 76 years old, and
those who have not disclosed their income tend to choose longer distances. In addition, participating in
shopping activities of longer durations (which is considered as exogenous in that case) will make individuals
to also travel for longer distances. Considering shopping duration as endogenous within a discrete-continuous
framework, however, would be a more accurate approach, leading to better capturing the trade-offs between
shopping duration and distance travelled, which could be an interesting direction for future research. Finally,
decreasing marginal utilities/disutilities have been uncovered for a range of locational variables specified in a
logarithmic function. Specifically, shopping locations with more retail and parking areas will cause individuals
to travel for longer distances to visit them. Individuals living in areas with a higher average income tend
to choose longer distances. Finally, an increased shopping store variability (Shannon’s entropy) will lead to
smaller distances.

5.2. Standard Deviational Ellipse outputs
In the following, the estimates of the five SDE-related sub-models are detailed. Those estimates were

used to re-create estimated individual-specific SDEs, which on average contain 73.2 (41.6%) of the shopping
locations in the study area.

5.2.1. Home-SDE centroid distance outputs
The estimated distances between home and SDE centroids achieved a correlation of 0.48 with the observed

distances. The outputs of the corresponding model are presented in Table 4. According to those, individuals
living in areas other than quartile 3 tend to have an SDE centroid, i.e. the centre of gravity of their usual
movements, further away from their home locations. The distance between home and Leeds CBD also has an
impact on the home-SDE centroid distance with larger distances leading also to larger home-SDE centroid
distances for quartiles 2 and 4. On the contrary, distances between work locations and Leeds CBD will lead
to smaller home-SDE centroid distances for quartiles 2 and 3. The CBD of York also was found to have an
impact on the estimated distances. Specifically, larger home-York CBD distances will lead to larger home-SDE
centroid distances for individuals in quartile 3, but to smaller distances or those living in quartile 1. An
interesting insight also arises by investigating the impact of the distance between home and work locations,
where larger distances will lead to larger home-SDE centroid distances, as well, since the individuals are in
generally required to travel further away from their home due to the distant work location. Regarding the
remaining parameters, individuals of household income between £30,000-50,000 and £75,000-100,000 have
higher home-SDE centroid distances, while that also holds for elderly individuals (above 66 years old), for
unemployed people and for those working in the sales or maintenance industry, social workers and academics.
Smaller distances, however, are expected for married individuals and younger people (between 25-29 years
old).

5.2.2. Home-SDE centroid angle outputs
The model regarding the angle between home locations and SDE centroids achieved the highest level of

accuracy of the five SDE-related sub-models with a correlation of 0.78. The model outputs are presented in
Table 5. That model, together with the previous one for home-SDE centroid distance, is important for the
identification of the coordinates of the estimated SDE centroid, since a point can be defined by its distance
and its angle from another known point, in that case the home locations. Nonetheless, it is difficult to
extract any meaningful behavioural interpretation from its estimated parameters. It is important to note
that angles were measured from the home location to the SDE centroid, since the directionality matters
for the size of the calculated angles. The main interpretation that can be extracted from the estimates is
that on average the CBD of Leeds acts a strong attraction to the centre of gravity of individuals’ usual
areas of movement, as captured by the SDE centroid, regardless of the geographic quartiles they reside.
Specifically, individuals living in quartile 3 have the smallest home-SDE centroid angle with an average angle
of 87.5o. Individuals from quartile 4 and 1 have larger home-SDE centroid angles with average values of
150.9o and 195.7o, respectively. Finally, quartile 2 has the largest angles with an average value of 280.8o.
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Table 3: Modelling outputs of the distance (km) model for OSO trip chains

Parameters Estimates Rob. t-ratios
Constant -1.8424 -3.52
Car-Walking -1.3592 -2.04
Walking-Walking -1.3846 -13.83
Shopping: Other 0.4366 2.97
Household size: 1 member -0.1666 -2.29
Household size: 4 members -0.2578 -2.06
Occupation: Engineering/Community/ 0.2336 3.54
Social/Management/Student/Other
Occupation: Retired 0.4607 2.33
Time of day: Interpeak 0.1588 1.87
Time of day: Weekday night -0.2577 -2.04
Time of day: Weekday morning 1.1395 6.99
Time of day: Weekend morning 0.1459 1.59
Following trip purpose: Other -0.4919 -1.36
Following trip purpose: Social/Leisure -0.6376 -3.27
Following trip purpose: Return to Work -0.1687 -1.45
Age 25-29 0.4385 4.99
Age 30-39 0.1261 1.69
Age 50-59 0.1626 1.71
Age ≥ 76 0.2502 1.94
Shannon’s entropy 400m around -0.1079 -1.51
shopping destination (log)
Retail areas 400m around 0.1196 4.05
shopping destination in 1, 000m2 (log)
Household income £20,000-£30,000 -0.1305 -1.28
Household income £75,000-£100,000 -0.1872 -1.29
Household income- Not disclosed 0.4409 3.37
Parking areas 400m around 0.0456 1.38
shopping destination in 1, 000m2 for car trips (log)
Gender: Male -0.1104 -1.64
Total passengers in shopping trip >1 0.0851 1.36
Duration of shopping activity 0.1953 3.53
Marital status: Widowed -0.6593 -2.95
Trip part of a tour with main purpose: Education/Work -0.7579 -2.40
Average annual income in 400m around 0.5275 3.25
home location in £1,000 (log)
Sigma 0.6150 23.43
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Table 4: Modelling outputs for the distance of the Standard Deviational Ellipse centroid from the home location (disthc)

Parameters Estimates t-ratios
Constant -12.0510 -1.51
Home location in quartile 2, 4 12.0179 1.51
Home location in quartile 1 18.0662 2.15
Home-Leeds CBD distance in km (quartile 4) 0.1871 1.23
Home-Leeds CBD distance in km (quartile 2) 0.0432 2.39
Work-Leeds CBD distance in km (quartile 2, 3) -0.1351 -2.63
Household income £30,000-50,000 0.1382 1.55
Household income £75,000-100,000 0.2617 1.58
Occupation: Sales, Maintenance 0.6715 2.51
Occupation: Social 0.2706 1.71
Occupation: Academics, Research 0.3332 1.84
Home-Work distance in km (quartile 1) 0.2583 2.96
Home-Work distance in km (quartiles 2, 3) 0.3372 5.31
Home-Work distance in km (quartile 4) 0.4320 3.13
Married -0.2224 -2.38
Age 25-29 -0.3202 -2.01
Age >66 0.5669 2.37
Home-York CBD distance in km (quartile 1) -1.6410 -2.28
Home-York CBD distance in km (quartile 3) 3.3845 1.55
Unemployed (quartile 4) 0.7089 1.91
Sigma 0.6753 23.24

All the above are also captured in the model from the estimated parameters for quartiles 1, 2 and 4 using
quartile 3 as the base. It is also interesting to note that angles in quartile 2 are decreasing as home and work
locations are further away from Leeds CBD and the distance between home-work locations is increasing.
In addition, the neighbouring cities of Wakefield and Sheffield located in the south of Leeds also have an
influence on the position of the SDE centroid relative to the home locations in quartile 2 with those increasing
as the home-Wakefield CBD distance also increases and are decreasing as the home-Sheffield CBD distance
increases. Larger distances between home and work locations also can cause an increase in angles in quartile
3. Population has an influence on the home-SDE centroid angles in quartile 3 with a larger population
around home locations leading to increased angles. From the remaining parameters, individuals working
in maintenance occupations and those aged between 30-39 or 50-65 years old have smaller angles, while
individuals of lower income, engineers, students and those working in the food and serving industry have
larger home-SDE centroid angles, all else held equal.

5.2.3. SDE orientation outputs
The modelling specification for the SDE orientation achieved a correlation of 0.43 between observed and

predicted values. The estimated parameters are depicted in Table 6. Similarly to the previously described
home-SDE centroid angles, this model also captures the impact of the Leeds CBD to the orientation of the
SDE. The values of the SDE orientation range from 0o to 180o, since those angles in that case are measured
from the SDE centroid to the top end of the ellipse. Because of that, SDEs for individuals residing in quartiles
1 and 3 have smaller values largely between 0o − 90o and average values of 79.2o and 71.1o, respectively,
while individuals living in quartiles 2 and 4 have SDEs with orientations between 90o − 180o and average
values of 109.0o and 111.5o, respectively. That is also captured in the model, with larger orientation angles
being predicted for quartile 2 and smaller for quartile 1 (although statistically significant only at the 80%
confidence level) relative to the base quartile 3. Orientations in quartile 4 are larger than those in quartile
3, but they were omitted from the final model since they were not statistically significant even at the 50%
confidence level. Regarding the remaining parameters, the larger the population around the home location
and the distance between home-Leeds CBD the larger the angle orientation of the SDE. Individuals with
personal income of £10,000-30,000 and £40,000-75,000 have larger orientations, while the opposite is true for
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Table 5: Modelling outputs for the angle between the Standard Deviational Ellipse centroid and the home location (θhc)

Parameters Estimates t-ratios
Constant -4.1798 -4.11
Home in quartile 1 3.3350 3.40
Home in quartile 2 40.6517 2.61
Home in quartile 4 2.9321 2.99
Home-Leeds CBD distance in km (linear) (quartile 2) -1.3490 -2.76
Home-Leeds CBD distance in km (log) (quartile 2) 1.4916 3.50
Work-Leeds CBD distance in km (log) (quartile 2) -0.2239 -2.41
Population 400m around 4.1139 2.13
home location in 1,000 people (log) (quartile 3)
Personal income <£10,000 0.9963 4.20
Occupation: Engineering 0.7541 3.27
Occupation: Maintenance -1.2733 -1.72
Occupation: Food and serving 1.0490 1.46
Occupation: Business, Education 0.2439 1.68
Student 1.1086 3.94
Home-Work distance in km (log) (quartile 2) -0.3182 -2.53
Age 30-39 and 50-59 -0.3822 -2.87
Age 60-65 -0.9361 -2.93
Home-Work angle (quartile 2) 0.7091 2.48
Home-Work angle (quartile 3) 1.3336 2.35
Home-Wakefield CBD distance in km (quartile 2) 2.4829 2.59
Home-Sheffield CBD distance in km (quartile 2) -1.4075 -2.50
Precision ϕ 3.3457 12.28

higher personal incomes between £75,000-100,000, unemployed people living in quartile 3 and for those living
in more deprived areas in quartile 2.

5.2.4. SDE minor/major axis ratio outputs
The estimated model for the minor/major axis ratio ( bsde

asde
) of the SDEs achieved a correlation of 0.45

between observed and predicted values and its outputs are presented in Table 7. Overall, individuals located
at quartile 4 have larger bsde

asde
ratios compared to the rest and especially compared to those residing in quartile

2. Those living in quartile 2 also tend to have larger ratios as the variability of shopping store types around
their home locations increases. An interesting finding can be observed for the effect of income on the estimated
ratios, with an almost monotonically decreasing bsde

asde
ratio as the personal income increases. In addition, as

the size of the household increases the bsde

asde
ratio decreases possibly due to increased family commitments,

while smaller ratios are also expected for people with no car availability, unmarried, working in Education or
in arts, media and the sports industry and being between 18-24 or 40-49 years old.

5.2.5. SDE area outputs
The model regarding the SDE area achieved a correlation of 0.42 between the observed and estimated

areas and its outputs are presented in Table 8. In general, individuals residing in quartile 1 have a larger
SDE area. Furthermore, distance between home and Leeds CBD is a significant factor influencing the area
with higher instances also leading to larger areas. The same also holds for distances between the individuals’
work locations and the Leeds CBD, as well as distances between home-work locations (for quartiles 2 and
4), which also positively affects the SDE area with larger distances leading to larger SDE areas, i.e. the
visited locations of the individual are more dispersed in space. Male individuals, students, and low income
individuals have lower SDE areas, while the opposite is true for retired, divorced and unemployed individuals
residing in quartiles 1 and 4. Higher population in buffers of 400m around home locations will lead to larger
areas for homes in quartiles 1 and 4, but smaller for quartile 4. Finally, a more diverse set of land uses around
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Table 6: Modelling outputs for the orientation of the Standard Deviational Ellipse (θsde)

Parameters Estimates t-ratios
Constant 0.4372 1.07
Home located in quartile 2 1.7330 3.22
Home located in quartile 1 -0.5826 -1.35
Home-Leeds CBD distance in km (log) (quartile 4) 0.4272 3.69
Population 400m around 1.3999 1.92
home in 1,000 people (log) (quartile 1)
Personal income £10,000-30,000 0.2429 1.79
Personal income £40,000-75,000 0.2962 1.32
Personal income £75,000-100,000 -1.0363 -1.66
Unemployed (quartile 3) -1.0155 -1.60
Average IMD 400m around home (log) (quartile 2) -0.3718 -2.20
Precision ϕ 2.5125 13.3

Table 7: Modelling outputs for the minor/major axis ratio of the Standard Deviational Ellipse ( bsde
asde

)

Parameters Estimates t-ratios
Constant 0.2799 1.45
Home located in quartile 4 0.3888 1.55
Home located in quartile 2 -0.4586 -1.20
Home located in quartile 1 0.1548 0.91
Average Shannon’s entropy 400m around home (quartile 2) 1.3516 1.72
Angle between home location and Leeds CBD (quartile 2) -0.0045 -1.49
Personal income £10,000-20,000 -0.3262 -2.18
Personal income £20,000-30,000 -0.5208 -3.52
Personal income £30,000-40,000 -0.2023 -1.33
Personal income £40,000-50,000 -0.6026 -2.84
Personal income £75,000-100,000 -1.0159 -2.11
Occupation: Food and serving 1.2547 2.20
Occupation: Art, sports and media -1.0400 -1.63
Occupation: Education -0.3602 -2.41
Household size -0.0777 -2.50
No car ownership -0.3759 -3.00
Home-Work distance in km (log) (quartile 4) -0.2513 -2.27
Non married -0.3119 -2.80
Age 18-24 -0.2264 -1.46
Age 40-49 -0.2259 -1.79
Precision ϕ 5.9588 12.43
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Table 8: Modelling outputs for the area of the Standard Deviational Ellipse (Asde)

Parameters Estimates t-ratios
Constant 1.9131 3.26
Home-Leeds CBD (quartile 1) 2.7535 3.02
Home-Leeds CBD distance (log) (quartile 1) 0.4817 1.83
Home-Leeds CBD distance (log) (quartile 2) 0.4843 2.12
Home-Leeds CBD distance (log) (quartile 3) 1.0470 3.72
Work-Leeds CBD distance (log) 0.1603 2.34
Population 400m around home location in 1,000 people (log) (quartile 1) 2.0909 3.79
Population 400m around home location in 1,000 people (log) (quartile 3) 1.8691 1.49
Population 400m around home location in 1,000 people (log) (quartile 4) -1.2987 -1.42
Average Shannon’s entropy 400m around home (quartile 1) -2.0843 -1.57
Average Shannon’s entropy 400m around home (quartile 4) 4.1394 3.06
Personal income £10,000-20,000 -0.3074 -1.58
Student -0.9935 -3.62
Retired 0.6626 1.83
Number of cars 0.4861 3.82
Home-Work distance (log) (quartile 2) 0.4179 2.91
Home-Work distance (log) (quartile 4) 0.7289 3.98
Divorced 1.0171 3.52
Male -0.4708 -3.01
Unemployed (quartile 1) 0.8565 1.59
Unemployed (quartile 4) 2.2312 3.48
Sigma 1.1722 23.24

home locations (as captured by Shannon’s entropy) will lead to lower SDE areas for homes in quartile 2, but
the opposite is true for quartile 4 leading to larger areas.

It is worth highlighting at this point that the aforementioned models of structural ellipsoidal SDE
components were estimated on small sample sizes of 270 individuals. As a result, we opted to be more lenient
on assessing the statistical significance of each estimated parameters through their t-ratios. Furthermore,
the correlation between most of the respective observed and estimated values lies around 0.45 with only the
model for home-SDE centroid angle achieving a higher correlation of 0.78. That signifies that there are other
unobserved factors influencing those structural SDE elements and more specifically the SDE orientation, the
minor/major axis ratio and the SDE area, which the small sample size and the limited duration of the survey
(2 weeks) did not allow us to capture. Therefore, caution is advised when using those estimates for prediction
and more research is required to uncover those latent factors, which should be a subject for future studies.

5.3. Latent Class Choice Model outputs
Moving on to the estimation of the behavioural models, it is worth mentioning that they were estimated

on choice sets comprised of 1584 alternatives (3 modes for first shopping trip x 176 shopping locations x 3
modes for following trip). The general specification of the models presented includes a range of Alternative
Specific Constants (ASCs) as shifts from the base alternative, which in this case is assumed to be travelling
by car for both trip legs to destination 1, which refers to the central shopping mall in the city of Leeds
(car-car-dest 1). As expected in a case of a model including J = 1584 alternatives, it is not possible to estimate
J − 1 ASCs for numerical and computational reasons. As a result, we opted to group alternatives based
on their general geographical area relative to Leeds Central Business District (CBD), with that grouping
comprising of 9 categories, namely Leeds CBD, north-east-south-west of Leeds and north-east-south-west
of the remaining region of Yorkshire. The shifts from the base ASC, include interaction effects for specific
modes and for specific areas, separately for individuals with and without car ownership in their household,
for students and for married individuals. The Level-of-Service (LOS) parameters include travel times for
the mechanised modes of car and Public Transport (PT), distance for walking and travel cost for car and
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PT. Base parameters for the three LOS attributes specifically for the first shopping trip were specified using
a Box-Cox transformation for the purpose of capturing the presence of non-linearities in the sensitivities
(Box and Cox, 1964). Using that approach, the LOS attributes x are entering the Utility function as β xλ−1

λ ,
with β being the base parameter for a specific LOS attribute and λ being an additional estimated parameter
capturing the degree of non-linearity. An estimated λ == 1 indicates a linear specification as the Box-Cox
transformation effectively collapses to βx, a λ < 0 indicates the presence of decreasing marginal disutilities,
while in the case of λ = 0 the Box-Cox specification takes a logarithmic form βlog(x). Finally, the flexibility
of a Box-Cox transformation allows for the case of λ > 1 indicating the presence of increasing marginal
disutilities, such as instances of increasing discomfort or time restrictions for the remaining time budget as
travel time and/or cost increases. Shifts from those base LOS parameters are also specified for the following
trip, for specific types of shopping activities, types of tours, trip chains and times of day. Furthermore,
interactions with continuous measures of shopping duration are specified for time and walking and of personal
income for cost. The remaining specified parameters refer to a measure capturing the angular deviation from
the straight OD path that is required to reach the intermediate shopping location, a range of locational
variables aiming to capture the preference of car drivers for parking spaces, the preference of individuals living
in richer places to go shopping in poorer areas and vice versa, as well as a similar measure for individuals
living in less racially diverse to go shopping to more racially diverse neighbourhoods. In that study, the
quartiles of the distribution of house prices around the home location are used to characterise an area as
rich (quartile 4) or poor (quartile 1) and the same is done for racial diversity using the distribution of the
percentage of white residents to characterise an area as less (quartile 4) or more racially diverse (quartile 1.
The additional attraction due to the presence of major retailers per shopping type is also captured, while
finally a range of size variables referring to the population around the shopping location, the total retail area
per shopping type and the diversity of shopping store types are also included in a composite logarithmic term
as described in Section 3.

The fit statistics of the behavioural models are presented in Table 9. Besides the proposed PCS-LCCM
specification, which is able to capture heterogeneity in the choice sets and in the sensitivities, three additional
models are presented, a base MNL model, MNL-base, using the global choice set of feasible alternatives, a
base LCCM specification, LCCM-base, using the same choice set as MNL-base and capturing unobserved
heterogeneity in the sensitivities and a simplified probabilistic choice set formation LCCM, PCS-LCCM-
generic, using the same choice set structure across classes as the proposed PCS-LCCM, but with generic
parameters across classes and only constants in the class allocation. PCS-LCCM-generic is similar to the
specification proposed in the study of Thill and Horowitz (1997a) but using different proxy measures for
latent constraints. The inclusion of the PCS-LCCM-generic has the purpose of capturing the impact of
confounding unobserved heterogeneity in choice set formation with heterogeneity in sensitivities. That model
still provides significant model fit improvements from the MNL-base model with 33.54 LL units with just two
additional parameters, namely the two constants in the class allocation model, as depicted in Table 9. The
remaining two models that are able to capture unobserved individual heterogeneity in the sensitivities, namely
LCCM-base and PCS-LCCM, provide further improvements over the MNL-base model by 117.9 and 148.1
LL units, respectively, with 52 additional parameters. The proposed PCS-LCCM is also able to outperform
the LCCM-base model by 30.18 LL units with the same number of parameters, although a direct comparison
of the log-likelihoods of the two models is not a valid approach, since those two are not nested specifications.
Nonetheless, the improvements in model fit become evident by examining and comparing the AIC and BIC
statistics (Ben-Akiva and Swait, 1986), both of which are improved for the PCS-LCCM compared to the
LCCM-base. The proposed PCS-LCCM model is also able to outperform the PCS-LCCM-generic model by a
significant margin, namely by 114.51 LL units with 50 additional parameters.

More important, however, are the differences in the estimated shares of the latent classes, with PCS-
LCCM-generic allocating individuals by 28.2% to class a, 2.9% to class b and 68.9% to class c. Contrary to
that, the PCS-LCCM model estimates a much larger share for class b, specifically 29.3% of the sample, and
also smaller shares for class a and c, namely 24.8% and 45.9%, respectively. That serves as an indication of
the necessity to capture heterogeneity both in the choice sets and in the sensitivities across the estimated
classes, which is an aspect missing in Thill and Horowitz (1997a).

According to the estimated ASCs presented in Table 10, destination 1 (base) is more likely to be chosen
when travelling by a PT or walking due to the parking restrictions in Leeds CBD and due to the increasing
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Table 9: Fit statistics of the modelling specifications

Fit statistics MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Log-likelihood (model) -4,106.186 -3,988.274 -4,072.650 -3,958.099
AIC 8,316.37 8,184.55 8,253.3 8,124.2
BIC 8,594.06 8,739.93 8,541.67 8,679.58
Number of parameters 52 104 54 104
Number of individuals 270
Number of observations 1,541

promotion of more sustainable modes. The same also holds for the remaining destinations in the city centre,
which are also in general less likely to be chosen compared to destination 1. Destinations in the remaining
study area further away from the city centre are even less favourable, especially for modes other than car,
although shopping locations in local high streets are again more likely to be visited by walking. Mode
combinations other than those involving car are also more likely to be chosen for individuals with no car
availability in their households. Furthermore, shopping trips including more than 1 passenger are more likely
to be performed by car, at least for one of the two legs, due to its convenience. Finally, walking for both legs
is more likely to be chosen by students, but less likely by married couples hinting to cases of more constrained
time budgets for the latter demographic group compared to the former.

Table 10: Estimated ASCs and sociodemographic shifts of the modelling specifications

Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)
MNL-base LCCM PCS-LCCM- PCS-LCCM

generic
Households with car ownership (base: car-car/dest 1)
ASC dest 1 shift Car-PT/Car-Walking -1.6871 (-2.55) -1.5334 (-2.25) -1.5453 (-2.32) -1.7506 (-2.15)
ASC dest 1 shift PT-PT 1.4219 (3.70) 1.5695 (3.86) 1.4275 (3.71) 1.6282 (4.14)
ASC dest 1 shift Walking-PT/Walking-Walking 2.5854 (9.25) 2.7180 (9.45) 2.6698 (9.40) 3.0955 (7.34)
ASC rest Leeds CBD -2.2826 (-6.47) -2.2197 (-6.08) -2.2339 (-6.46) -2.1619 (-5.84)
ASC rest Leeds CBD PT-Car/Walking-Car/ 1.7345 (4.20) 1.7530 (4.33) 1.6992 (4.27) 1.7232 (3.95)
PT-PT/PT-walking
ASC rest Leeds CBD Walking-PT 2.9668 (6.50) 2.9974 (6.49) 2.9381 (6.66) 3.2687 (5.76)
ASC rest Leeds CBD Walking-Walking 3.8365 (9.02) 3.9309 (8.98) 3.8931 (9.20) 4.0709 (8.05)
ASC rest Leeds (no CBD) -0.6215 (-5.66) -0.6500 (-5.59) -0.6525 (-5.71) -0.5632 (-4.94)
ASC rest Leeds (no CBD) Car-PT/Car-Walking -2.8230 (-8.53) -2.8247 (-8.97) -2.6713 (-8.06) -3.2396 (-7.29)
ASC rest Leeds (no CBD) PT-Car/PT-PT/ -1.2653 (-5.59) -1.4362 (-5.83) -1.2973 (-5.66) -1.6280 (-4.96)
PT-walking/Walking-Car/Walking-PT
ASC rest Leeds (no CBD) Walking-Walking 0.8037 (2.88) 0.8646 (2.99) 0.8828 (3.09) 0.7185 (1.50)
ASC rest Yorkshire (no Leeds) Car-PT/Car-Walking/ -1.7449 (-5.79) -1.8331 (-5.76) -1.6678 (-5.54) -1.9882 (-5.47)
PT-Car/PT-PT/PT-Walking/Walking-Car/Walking-PT
Shifts for households with no car ownership
Car-PT/Car-Walking/Walking-PT/Walking-Walking 2.4892 (7.18) 2.2060 (7.11) 2.5350 (7.53) 2.7200 (7.01)
PT-PT 4.3207 (10.94) 4.1018 (10.27) 4.2962 (11.37) 4.7209 (9.61)
PT-Walking 3.1890 (7.06) 2.4761 (5.97) 3.2227 (7.29) 3.4159 (4.66)
Shifts for central areas outside Leeds city centre
Walking-PT/Walking-Walking 2.0958 (3.41) 2.0963 (3.12) 2.1850 (3.66) 2.2892 (3.74)
Shifts for trips with more than 1 passenger
PT for first/following trip -1.4224 (-5.57) -1.3454 (-5.22) -1.4396 (-5.68) -1.6195 (-5.33)
Walking for first/following trip -0.5303 (-3.94) -0.5217 (-4.25) -0.5185 (-3.96) -0.6501 (-4.46)
Shifts for students
Walking-Walking 1.2361 (3.60) 1.2182 (3.32) 1.2759 (3.79) 1.7160 (3.28)
Shifts for married individuals
Walking-Walking -0.5279 (-2.10) -0.7629 (-3.19) -0.5077 (-2.01) -0.6256 (-2.14)

Regarding the LOS variables of travel time, travel distance and travel cost, depicted in Table 11,
statistically significant non-linearities were found for PT time, walking distance and travel cost, while only
linear sensitivities were found for car time. In general, decreasing travel time and walking distance sensitivities
were found as the shopping duration increases, while decreasing cost sensitivities were found as personal
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income increases, but not for all classes for the LCCM specifications. Finally, travel time for motorised modes
and walking distance sensitivities were slightly higher for the following trip relative to the first shopping trip.

More specifically for PCS-LCCM, class a representing individuals with significant space-time constraints
has the highest travel time for car/PT and walking distance sensitivity for the first trip to the shopping
destination. At the same time, those individuals are half as sensitive for travelling to the following activity
location by a motorised mode and equally sensitive for walking there. That indicates that individuals in
class a are more likely to choose a shopping destination closer to their initial origin to cover their shopping
needs before travelling by car/PT to their next activity. Also worth noting is that the Box-Cox λ for walking
distance of class a is above 1.0 indicating increasing marginal disutilities as distance increases. In contrast,
class b, with individuals restricted within their usual area of movement, shows the smallest travel time and
walking distance sensitivities for the first trip and the largest for the following one, meaning that they are
more likely to choose a shopping destination closer to the destination of the following activity. Contrary to
those, class c has time and walking distance sensitivities more in line with the estimates of the MNL-base
model. All three classes show a decreasing marginal time disutility as the duration of the shopping activity
increases. The same does not hold, however, across classes for the sensitivity to walking distance, with class a
being the exception showing an increasing marginal disutility. Regarding cost sensitivities, classes a and b
have similar base cost parameters, but class a also shows an increasing marginal cost disutility as captured
by the Box-Cox λ and a decreasing one as income increases, while class b has a linear marginal cost disutility
and an increasing one as income decreases. Finally, individuals in class c have a much lower and in fact not
statistically significant linear base cost sensitivity, but one that increases proportionately to income.

Table 11: Estimated LOS parameters of the modelling specifications

Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)
MNL-base LCCM PCS-LCCM- PCS-LCCM

generic
Households with car ownership (base: car-car/dest 1)
ASC dest 1 shift Car-PT/Car-Walking -1.6871 (-2.55) -1.5334 (-2.25) -1.5453 (-2.32) -1.7506 (-2.15)
ASC dest 1 shift PT-PT 1.4219 (3.70) 1.5695 (3.86) 1.4275 (3.71) 1.6282 (4.14)
ASC dest 1 shift Walking-PT/Walking-Walking 2.5854 (9.25) 2.7180 (9.45) 2.6698 (9.40) 3.0955 (7.34)
ASC rest Leeds CBD -2.2826 (-6.47) -2.2197 (-6.08) -2.2339 (-6.46) -2.1619 (-5.84)
ASC rest Leeds CBD PT-Car/Walking-Car/ 1.7345 (4.20) 1.7530 (4.33) 1.6992 (4.27) 1.7232 (3.95)
PT-PT/PT-walking
ASC rest Leeds CBD Walking-PT 2.9668 (6.50) 2.9974 (6.49) 2.9381 (6.66) 3.2687 (5.76)
ASC rest Leeds CBD Walking-Walking 3.8365 (9.02) 3.9309 (8.98) 3.8931 (9.20) 4.0709 (8.05)
ASC rest Leeds (no CBD) -0.6215 (-5.66) -0.6500 (-5.59) -0.6525 (-5.71) -0.5632 (-4.94)
ASC rest Leeds (no CBD) Car-PT/Car-Walking -2.8230 (-8.53) -2.8247 (-8.97) -2.6713 (-8.06) -3.2396 (-7.29)
ASC rest Leeds (no CBD) PT-Car/PT-PT/ -1.2653 (-5.59) -1.4362 (-5.83) -1.2973 (-5.66) -1.6280 (-4.96)
PT-walking/Walking-Car/Walking-PT
ASC rest Leeds (no CBD) Walking-Walking 0.8037 (2.88) 0.8646 (2.99) 0.8828 (3.09) 0.7185 (1.50)
ASC rest Yorkshire (no Leeds) Car-PT/Car-Walking/ -1.7449 (-5.79) -1.8331 (-5.76) -1.6678 (-5.54) -1.9882 (-5.47)
PT-Car/PT-PT/PT-Walking/Walking-Car/Walking-PT
Shifts for households with no car ownership
Car-PT/Car-Walking/Walking-PT/Walking-Walking 2.4892 (7.18) 2.2060 (7.11) 2.5350 (7.53) 2.7200 (7.01)
PT-PT 4.3207 (10.94) 4.1018 (10.27) 4.2962 (11.37) 4.7209 (9.61)
PT-Walking 3.1890 (7.06) 2.4761 (5.97) 3.2227 (7.29) 3.4159 (4.66)
Shifts for central areas outside Leeds city centre
Walking-PT/Walking-Walking 2.0958 (3.41) 2.0963 (3.12) 2.1850 (3.66) 2.2892 (3.74)
Shifts for trips with more than 1 passenger
PT for first/following trip -1.4224 (-5.57) -1.3454 (-5.22) -1.4396 (-5.68) -1.6195 (-5.33)
Walking for first/following trip -0.5303 (-3.94) -0.5217 (-4.25) -0.5185 (-3.96) -0.6501 (-4.46)
Shifts for students
Walking-Walking 1.2361 (3.60) 1.2182 (3.32) 1.2759 (3.79) 1.7160 (3.28)
Shifts for married individuals
Walking-Walking -0.5279 (-2.10) -0.7629 (-3.19) -0.5077 (-2.01) -0.6256 (-2.14)
LOS variables
Travel time car, PT for first trip (mins) -0.0996 (-11.46) – -0.0876 (-10.28) –
Travel time car, PT for first trip (mins) (class a) – -0.0796 (-776.23) – -0.2033 (-4.24)
Travel time car, PT for first trip (mins) (class b) – -0.1217 (-3.98) – -0.0233 (-0.33)
Travel time car, PT for first trip (mins) (class c) – -0.1025 (-10.20) – -0.0989 (-6.60)
Travel time shift for clothes shopping 0.0371 (3.87) – 0.0350 (3.75) –
Travel time shift for clothes shopping (class a) – 0.0321 (19.86) – -0.0752 (-1.07)
Travel time shift for clothes shopping (class b) – 0.0188 (0.37) – 0.0242 (0.36)
Travel time shift for clothes shopping (class c) – 0.0310 (2.28) – 0.0211 (0.96)
Travel time shift for OSO trip chains 0.0154 (2.44) – 0.0139 (2.26) –
Travel time shift for OSO trip chains (class a) – 0.0542 (130.85) – 0.1906 (2.24)
Travel time shift for OSO trip chains (class b) – -0.0066 (-0.30) – -0.0011 (-0.13)
Travel time shift for OSO trip chains (class c) – 0.0109 (1.49) – 0.0069 (0.67)
Travel time shift for HWH tours -0.0477 (-4.55) – -0.0438 -(4.37) –
Travel time shift for HWH tours (class a) – -0.0384 (-0.96) – 0.0155 (0.25)

Continued on next page
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Table 11 – continued from previous page
Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)

MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Travel time shift for HWH tours (class b) – -0.1006 (-1.77) – -0.0080 (-0.28)
Travel time shift for HWH tours (class c) – -0.0339 (-2.74) – -0.0639 (-3.57)
Travel time shift for morning/weekend night -0.0513 (-3.45) – -0.0456 (-2.83) –
Travel time shift for morning/weekend night (class a) – -0.0855 (-1.59) – -0.0961 (-1.22)
Travel time shift for morning/weekend night (class b) – 0.0104 (0.28) – -0.0019 (-0.09)
Travel time shift for morning/weekend night (class c) – -0.0844 (-3.35) – -0.0755 (-1.69)
Travel time multiplier for following trip 1.2386 (2.94) – 1.2813 (3.14) –
Travel time multiplier for following trip (class a) – 1.4275 (1.09) – 0.4945 (-4.51)
Travel time multiplier for following trip (class b) – 2.0494 (2.21) – 7.7936 (0.26)
Travel time multiplier for following trip (class c) – 1.0417 (0.44) – 1.0793 (0.33)
Shopping duration-travel time elasticity -0.3261 (-10.85) – -0.3540 (-10.71) –
Shopping duration-travel time elasticity (class a) – -0.3522 (-3.68) – -0.3005 (-2.48)
Shopping duration-travel time elasticity (class b) – -0.2807 (-3.04) – -0.4121 (-1.72)
Shopping duration-travel time elasticity (class c) – -0.3573 (-9.15) – -0.3384 (-5.98)
Box-Cox λ PT travel time 0.7652 (-9.31) – 0.7748 (-8.60) –
Box-Cox λ PT travel time (class a) – 1.3010 (6.57) – 0.8088 (-1.54)
Box-Cox λ PT travel time (class b) – 0.6012 (-6.86) – 0.7093 (-2.87)
Box-Cox λ PT travel time (class c) – 0.8025 (-6.36) – 0.7856 (-5.86)
Walking distance for first trip (km) -1.5930 (-12.60) – -1.4470 (-11.67) –
Walking distance for first trip (km) (class a) – -7.4632 (-4.02) – -6.5966 (-3.36)
Walking distance for first trip (km) (class b) – -1.9114 (-2.80) – -0.1913 (-0.15)
Walking distance for first trip (km) (class c) – -1.3102 (-8.66) – -1.4650 (-5.42)
Walking distance shift for OSO trip chains 0.1981 (1.80) – 0.2026 (1.88) –
Walking distance shift for OSO trip chains (class a) – -1.2952 (-0.65) – 2.8216 (1.81)
Walking distance shift for OSO trip chains (class b) – 0.1782 (0.18) – -0.1261 (-0.36)
Walking distance shift for OSO trip chains (class c) – 0.1886 (1.22) – 0.2416 (1.18)
Walking distance multiplier for following trip 1.2272 (2.41) – 1.2660 (2.58) –
Walking distance multiplier for following trip (class a) – 0.1448 (-8.04) – 1.2761 (1.27)
Walking distance multiplier for following trip (class b) – 1.0851 (0.41) – 22.2251 (0.13)
Walking distance multiplier for following trip (class c) – 1.4818 (2.63) – 0.7755 (-0.83)
Box-Cox λ walking distance 0.7887 (-4.08) – 0.8219 (-3.21) –
Box-Cox λ walking distance (class a) – 1.7529 (1.44) – 1.8287 (1.76)
Box-Cox λ walking distance (class b) – 0.8440 (-0.89) – 2.0684 (0.29)
Box-Cox λ walking distance (class c) – 0.8353 (-1.98) – 0.9832 (-0.12)
Shopping duration-walking distance elasticity -0.1443 (-4.32) – -0.1593 (-4.45) –
Shopping duration-walking distance elasticity (class a) – 0.1608 (1.13) – 0.1591 (1.89)
Shopping duration-walking distance elasticity (class b) – -0.3807 (-2.13) – -0.1580 (-0.91)
Shopping duration-walking distance elasticity (class c) – -0.1398 (-3.06) – -0.2710 (-4.08)
Travel cost (£) -0.5887 (-8.44) – -0.5165 (-7.46) –
Travel cost (£) (class a) – -2.7637 (-8.71) – -0.9448 (-2.38)
Travel cost (£) (class b) – -0.6751 (-2.40) – -1.1802 (-1.66)
Travel cost (£) (class c) – -0.4275 (-5.33) – -0.1618 (-1.06)
Box-Cox λ travel cost 0.5900 (-7.43) – 0.6568 (-6.02) –
Box-Cox λ travel cost (class a) – 0.8878 (-0.68) – 1.2473 (1.83)
Box-Cox λ travel cost (class b) – 1.0110 (0.03) – 1.0049 (0.04)
Box-Cox λ travel cost (class c) – 0.7106 (-3.93) – 0.7888 (-0.81)
Cost-Personal income elasticity -0.2862 (-2.91) – -0.3112 (-2.72) –
Cost-Personal income elasticity (class a) – 0.1863 (1.92) – -0.5483 (-2.54)
Cost-Personal income elasticity (class b) – 0.7297 (1.11) – 0.5531 (1.21)
Cost-Personal income elasticity (class c) – -0.5207 (-3.03) – -1.0933 (-1.54)

The model is also able to uncover interesting insights that could hint to instances of spatial and economic
inequality in the area of Leeds, as shown in Table 12. According to the model, all else held equal, individuals
living in more affluent areas (highest percentile of house prices) are less likely to visit shopping destinations
located in poorer areas (lowest percentile of house prices). In contrast, individuals living in poorer areas do
not show any preference difference in visiting richer or equally poor areas to cover their shopping needs. A
potential interpretation of the above, relevant for policy makers, could be that a pound earned in the most
affluent areas is more likely to be spent, hence distributed, in similarly affluent areas, while a pound earned
in the least affluent areas is more likely to be equally distributed across space. Therefore, in the long run,
wealth accumulation would favour more the already wealthy areas in Leeds compared to the rest leading to
increased spatial inequalities. In a similar way, individuals living in areas with a higher percentage of white
residents are less likely to shop in areas at the lowest percentile of white residents. Nonetheless, the same
does not hold for individuals living in those areas at the lowest percentile as they are more willing to visit
shopping destinations located in areas at the second and third percentile than in areas similar to theirs. As
in every other problem in the urban context, there is of course a circular causality to disentangle here, as well
(Bettencourt, 2021). According to that, all of the above, could be the result of the agglomeration of higher
quality elemental shopping stores or better urban environment in general in richer or white dominated areas,
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which leads to a reinforcing feedback loop favouring specific areas over others. That is exactly the problem
that policy makers could try to alleviate by breaking that loop with the implementation of proper policy
measures to provide relevant investment incentives in less affluent areas, as well.

Most of the remaining parameters, i.e. angular deviation, locational parameters and size variables, were
found to be generic across classes and their estimates are similar with those of the MNL-base and LCCM-base
models. The only exception is the parameter capturing how likely is for individuals living in richer areas
to go shopping to poorer areas, which has been allowed to differ across classes. According to the estimated
PCS-LCCM, individuals in class a who live in richer areas have a dispreference to travel to poorer areas for
covering their shopping needs, but the opposite is true for individuals in class b. Nonetheless, both of those
parameters are not statistically significant. Residents of richer areas of class c, however, show an even higher
and statistically significant dispreference for shopping in areas with lower house prices.

A Box-Cox transformation of parking areas captured significantly positive, but also decreasing sensitivities
as the area of parking increases. The presence of major retail attractions per shopping category (clothes,
grocery, other) significantly increases the likelihood of visiting the shopping destination for trips of the
respective shopping category. With regard to the direction of travel, shopping destinations located in places
where the angular deviation between OS and OD is greater than 90o are less likely to be chosen compared to
others, conforming to our initial assumptions.

The estimated multiplier ϕ of the logarithm of the composite size variable is significantly lower than 1.0
in all of the models presented. According to Kristoffersson et al. (2018), that hints to instances of significant
unobserved correlation among the elemental alternatives within the aggregate shopping destinations used in
the choice set. An increased cumulative retail floor area of grocery, clothes and durable stores in a destination
acts as a more significant attractor for trips of the respective shopping category than population that was
used as the base size variable. Furthermore, the cumulative floor area of grocery stores and an increased store
type variability in neighbouring destinations in medium distances (1000-2000 m) will add to the attraction of
the shopping destination, when the subsequent trip is also for shopping.

Table 12: Estimated locational parameters of the modelling specifications

Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)
MNL-base LCCM PCS-LCCM- PCS-LCCM

generic
Direction of travel
Presence of angle>90o between O-S and O-D -0.2621 (-2.22) -0.2968 (-2.55) -0.1920 (-1.58) -0.2424 (-1.87)
Locational variables
Parking areas (400m buffer) 0.1036 (4.00) 0.1091 (4.34) 0.1057 (4.05) 0.1151 (4.20)
Box-Cox λ for parking areas (400m buffer) 0.4219 (-7.86) 0.4189 (-8.39) 0.4237 (-7.94) 0.4085 (-8.44)
Living in rich areas - shopping in poor areas -0.6817 (-2.51) – -0.7166 (-2.64) –
Living in rich areas - shopping in poor areas (class a) – 0.1737 (0.31) – -0.8626 (-0.85)
Living in rich areas - shopping in poor areas (class b) – 0.1674 (0.33) – 0.5875 (0.70)
Living in rich areas - shopping in poor areas (class c) – -1.0518 (-2.71) – -2.2892 (-2.62)
Living in areas with high % of whites (quart.4) - -0.3732 (-1.72) -0.3971 (-1.90) -0.3664 (-1.68) -0.2679 (-1.10)
shopping in low % whites (quart.1)
Living in areas with low % of whites (quart.1) - 0.2889 (1.07) 0.2830 (0.93) 0.3011 (1.06) 0.4794 (1.61)
shopping in high % whites (quart.4)
Living in areas with low % of whites (quart.1) - 0.5348 (2.72) 0.5826 (3.05) 0.5576 (2.76) 0.6755 (2.99)
shopping in medium % whites (quart.2-3)
Major clothes shopping retailers (400m buffer) 1.3288 (6.03) 1.3515 (6.09) 1.3211 (5.94) 1.3672 (5.87)
Major grocery retailers (400m buffer) 0.4576 (4.51) 0.4657 (4.40) 0.4469 (4.33) 0.4180 (3.84)
Major durables retailers (400m buffer) 2.0015 (2.51) 1.9768 (2.59) 2.2064 (2.64) 1.9689 (2.74)
Size variables
Natural logarithm multiplier ϕ 0.6638 (-3.88) 0.6698 (-3.59) 0.6594 (-3.93) 0.6730 (-3.71)
Population (400m buffer) (base) 1.0000 (–) 1.0000 (–) 1.0000 (–) 1.0000 (–)
Retail areas for clothes (400m buffer) (log.) 0.4515 (0.95) 0.4260 (0.86) 0.4833 (1.00) 0.5543 (1.04)
Retail areas for groceries (400m buffer) (log.) 0.8961 (2.24) 0.8995 (2.15) 0.9113 (2.27) 1.0641 (2.53)
Retail areas for durables (400m buffer) (log.) 0.3905 (0.56) 0.2969 (0.42) 0.3035 (0.44) 0.2744 (0.38)
Shopping store variability when following 2.1171 (1.75) 1.8938 (1.38) 2.0269 (1.58) 1.9265 (1.35)
trip purpose is shopping (1000-2000m buffer) (log.)
Retail areas for groceries when following -0.8628 (-1.08) -0.9231 (-1.18) -0.7967 (-1.02) -0.6079 (-0.80)
trip purpose is shopping (1000-2000m buffer) (log.)

As already mentioned, according to the class allocation model presented in Table 13, 24.8% of the sample
is allocated to class a, therefore it is subject to space-time constraints, 29.3% to class b being subject to
spatial cognition limitations and the remaining 45.9% is allocated to class c, labelled as the explorers, since
they are willing to move in areas not visited before or at least not captured systematically during the survey
period. With regard to the behavioural profiling of the estimated classes, class a is more likely to include
individuals of higher household income above £65,000 (30.0% - average household income = £54,500), who
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are in a possession of at least one car (27.3% - average number of cars = 1.0), but also living in higher than
average deprived areas (30.6% living in areas with IMD>30 - average IMD = 23.7), live in a household of a
size above 4 people (31.3% - average household size = 2.0) and be of younger age below 30 years old (27.9%)
or older age above 60 years old (33.6% - average age = 39.5). According to the remaining sociodemographic
attributes not used in the class allocation model, individuals in class a are more likely to be employed in
social (28.8%) and legal occupations (42.9%) or be retired (33.9%), cohabiting with their partner (28.5%) and
have at least three more employed adults in their household (28.0%). From that profile analysis, it can be
concluded that those individuals could face space-time constraints mainly due to their family requirements
and the need to accommodate the daily needs of the household members or due to their age. The highly
deprived immediate neighbourhood that they reside might not provide the necessary incentives either in
terms of infrastructure or general urban environment for them to wander in the space around them and
explore new opportunities and amenities in neighbouring areas. As a result, they are more constrained to
their pre-defined schedules and time budget constraints. Especially, for the case of the elderly individuals it
is important to provide the necessary conditions to avoid cases of social exclusion.

With regard to class b, it is also more likely to include individuals of higher household income above
£65,000 (39.2% - average household income = £54,000), who live in a household of a size above 4 people
(38.1% - average household size = 2.0), but those also have a very low percentage of uniquely visited locations
(44.6% have below 20% of uniquely visited locations). According to their remaining sociodemographic
attributes, individuals in class b are more likely to be employed in the media/sports industry (45.1%) and
technical (31.0%) and sales-related (31.6%) occupations, be in a possession of a season ticket for PT (34.6%)
and live in a household with at least four more employed adults (38.1%). The behavioural profiling of class b
indicates that those individuals are more likely to be bounded to their usual areas of movement due to the
need to accommodate a significant amount of daily household needs, especially for the case of households
with many employed individuals and probably not in a possession of a sufficient amount of private vehicles to
accommodate all those individual needs. Contrary to class a, however, that increased number of employed
individuals in class b might also provide the necessary incentives and be the reason behind the increased area
of movement of those individuals, who are at least not bounded to their space-time constraints in a similar
way as individuals of class a. The increased family commitments, however, do constrain their time budgets
to not roam outside their familiar space to explore new opportunities and visit new locations. In order to
understand the impact of the increased family commitments of individuals allocated into classes a and b, the
ratio of personal to household income is calculated. According to that, the personal income of individuals
allocated into classes a and b is more likely to be only a small percentage of the total household income with
29.3% and 33.3% allocated to class a and b, respectively, having a personal income of less than 20% of the
total household income. Those allocation probabilities to classes a and b drop almost monotonically as their
personal income ratio increases. That means that individuals in those classes are not the top earners in their
family, hence are more likely to be involved with in-home activities to support the needs of the household.

Finally, class c is more likely to include younger individuals below 30 years old (48.3% - average age
= 40.5) of lower household income below £35,000 (55.6% - average household income = £46,000) with no
car ownership (54.5%) being alone in their household (67.0%) and visiting unique locations more frequently
(51.0% have above 60% of uniquely visited locations). In addition, individuals in class c are more likely to be
students (49.7%), working in maintenance and repairing occupations (61.8%) or be unemployed (55.1%) and
be single with regard to their marital status (49.4%). That behavioural profiling hints to individuals free
of the increased family commitments captured in classes a and b and hence able and willing to explore the
space beyond their usual areas of movement.

Table 13: Estimated parameters of the class allocation models

Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)
MNL-base LCCM PCS-LCCM- PCS-LCCM

generic
Constant class a – -2.6019 (-1.94) -0.8920 (-3.97) -1.9282 (-1.93)
Constant class b – -1.9054 (-1.01) -3.1578 (-0.85) -0.7224 (-0.65)
Household income class a – -0.0326 (-1.74) – 0.0165 (1.98)
IMD 400m around home class a – 0.0355 (2.02) – 0.0281 (2.32)
No car ownership class a – -1.6226 (-2.22) – -1.2401 (-2.62)
Population 400m around home class a – 1.0254 (1.73) – -0.1348 (-0.31)
Low unique visits class a – 1.1357 (1.59) – 0.6834 (1.25)
Household size above 4 members class a – 0.4062 (0.25) – 0.9635 (0.70)
Age below 25 years old class a – -0.8398 (-0.82) – 0.6862 (1.20)
Age above 60 years old class a – -0.4860 (-0.61) – 0.6982 (1.24)
Household income class b – 0.0016 (0.16) – 0.0095 (1.28)
IMD 400m around home class b – 0.0102 (0.49) – 0.0088 (0.63)
No car ownership class b – 0.9518 (1.23) – -0.2809 (-0.36)
Population 400m around home class b – -0.1769 (-0.15) – -0.3375 (-0.50)
Low unique visits class b – 1.8876 (2.74) – 1.4264 (1.66)

Continued on next page
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Table 14: Comparison of Values of Travel Time estimates across models (£/hr)

Parameters MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Shopping trip
Car 11.38 15.46 11.98 28.13
PT IVT 7.29 9.65 7.51 14.86
Following trip
Car 13.17 18.52 14.46 30.61
PT IVT 11.01 15.18 11.68 21.63

Table 13 – continued from previous page
Parameters Estimate (Rob. t-rat. 0) (Rob. t-rat. 1.0)

MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Household size above 4 members class b – 2.1574 (1.42) – 1.4468 (1.28)
Age below 25 years old class b – -0.3860 (-0.34) – -0.9790 (-0.71)
Age above 60 years old class b – -2.6021 (-0.45) – 0.0576 (0.06)

Besides the improvements in model fit and the interesting behavioural insights derived from the PCS-
LCCM specification, it is also important to note the discrepancies across models in the trade-offs of the
individuals as captured by the Values of Travel Time (VTT) estimates, depicted in Table 14. In general, car
VTTs are higher than PT values and VTTs for the first trip leg (shopping trips) are smaller than the ones
for the following trips, which also include commuting trips, among others. According to the VTTs across
the models examined, the values derived from PCS-LCCM are larger than the VTTs from the remaining
models indicating the impact of capturing latent constraints on the VTT estimation. Furthermore, demand
elasticities for different scenarios referring to a 1% increase in cost and time for car and PT are presented in
Table 15. From that comparison, it can be concluded that PCS-LCCM leads to generally more modest demand
elasticities/cross-elasticities compared to the remaining specifications examined and especially compared
to MNL-base. It is important to note the significant overestimation of demand elasticities resulted from
MNL-base in all scenarios examined both for time and cost and across modes. Similar findings were also
derived in the study of Basar and Bhat (2004) indicating important policy implications from choice set
misspecification.

6. Conclusions

In the current study, we focused on proposing a specification able to capture space-time and spatial
awareness constraints in a spatial choice context. The study illustrates that the proposed approach is able to
perform better than a range of other specifications used for comparison purposes. Furthermore, the study
also demonstrates the impact of capturing latent choice set formation mechanisms on the estimated VTT
values and demand elasticities, which can be important measures of analysis from a policy-perspective.

The geography-derived notions of Activity Spaces have been utilised in this study to define proxy measures
for capturing the aforementioned latent space-time and spatial awareness constraints. Nonetheless, other
measures could also be used for that purpose and future studies should continue on that direction to provide
more computationally efficient ways of defining latent consideration choice sets in a spatial choice modelling
context and its inherent complexity.

As a limitation of the current study, we should acknowledge the limited duration of the survey, which
could have significant impacts on the proper estimation of the Standard Deviational Ellipses. In fact we
could easily assume that we would end up with larger SDEs as a result of capturing more trips, which seem
as less frequent ones with the current utilised dataset. On the other hand, however, we also can not exclude
the possibility that the significant spatio-temporal regularities of travel would put more weight to specific
locations leading to less variance and noise and hence more compact SDEs for specific individuals than the
current ones.

In any case, the current study proposes an operational implementation of Manski’s framework and its IAL
version suitable and applicable for a spatial choice context with the necessary simplifications to make the
problem computationally tractable. The study also demonstrates that Activity Spaces can be incorporated as
proxy measures of capturing latent space-time and spatial cognition constraints leading to interesting insights
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Table 15: Comparison of demand elasticities across models

Parameters MNL-base LCCM PCS-LCCM- PCS-LCCM
generic

Increase car cost by 1%
Car -0.122 -0.100 -0.105 -0.089
PT 0.340 0.287 0.300 0.300
Walking 0.180 0.150 0.154 0.121
Increase PT cost by 1%
Car 0.059 0.056 0.057 0.061
PT -0.549 -0.516 -0.516 -0.526
Walking -0.016 -0.016 -0.017 -0.021
Increase car time by 1%
Car -0.383 -0.365 -0.348 -0.291
PT 1.187 1.182 1.068 0.938
Walking 0.548 0.517 0.500 0.424
Increase PT IVT by 1%
Car 0.090 0.087 0.087 0.077
PT -0.748 -0.747 -0.698 -0.637
Walking -0.039 -0.030 -0.039 -0.025

that could inform policy making. Besides the impact on VTTs and demand elasticities, the behavioural
profiling of the estimated classes of the LCCM can provide invaluable information to policy makers for the
purpose of proposing measures more suitable to the constraints of the underlying population, while also being
able to timely identify and prevent cases of social exclusion, such as the individuals in class a. More research
efforts in that direction, however, are necessary to disentangle the inherent complexity behind the formation
of latent constraints and choice set elicitation mechanisms.
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