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Abstract 1	

Discrete choice models are almost exclusively estimated assuming random utility 2	
maximisation (RUM) is the decision rule applied by individuals. Recent studies indicate 3	
alternative behavioural assumptions may be more appropriate in health. Decision field theory 4	
(DFT) is a psychological theory of decision-making, which has shown promise in transport 5	
research. This study introduces DFT to health economics, empirically comparing it to RUM 6	
and random regret minimisation (RRM) in risky health settings, namely tobacco and vaccine 7	
choices. Model fit, parameter ratios, choice shares, and elasticities are compared between 8	
RUM, RRM and DFT. Test statistics for model differences are derived using bootstrap 9	
methods. Decision rule heterogeneity is investigated using latent class models, including novel 10	
latent class DFT models. Tobacco and vaccine choice data are better explained with DFT than 11	
with RUM or RRM. Parameter ratios, choice shares and elasticities differ significantly between 12	
models. Mixed results are found for the presence of decision rule heterogeneity. We conclude 13	
that DFT shows promise as a behavioural assumption that underpins estimation of discrete 14	
choice models in health economics. The significant differences demonstrate that care should 15	
be taken when choosing a decision rule, but further evidence is needed for generalisability 16	
beyond risky health choices. 17	
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1 Introduction 1	

Discrete choice models are widely applied in health economics, overwhelmingly using stated 2	
preference data generated from discrete choice experiments (DCEs) (de Bekker-Grob, Ryan, 3	
& Gerard, 2012; Soekhai, de Bekker-Grob, Ellis, & Vass, 2019). These models provide 4	
policy-relevant outputs such as willingness-to-pay (WTP) and have been advocated for by 5	
several institutions, such as the US Food and Drug Administration (FDA), and the UK 6	
National Institute for Health and Care Excellence (U.S. Food and Drug Administration, 2016; 7	
Vass & Payne, 2017; National Institute for Health and Care Excellence, 2019).  8	

Any choice model requires a behavioural assumption on the underlying decision process. 9	
The typical assumption in choice modelling studies using stated preference data (also referred 10	
to as DCEs) is random utility maximisation (RUM) (Soekhai et al., 2019), due to its basis in 11	
economic consumer theory and ease of estimation (Boeri, Longo, Grisolía, Hutchinson, & 12	
Kee, 2013; Soekhai et al., 2019). RUM has also been used with revealed preference data (e.g. 13	
Buckell and Hess, 2019; De Corte et al., 2021; Buckell et al., 2022). In health sciences, nearly 14	
99% of studies make the RUM assumption1. It is unlikely, however, that any single model 15	
can perfectly capture the way that different, unique individuals behave – all models are 16	
models - and so alternative approaches may expand researchers’ understanding of behaviour 17	
and contribute to policy evidence. 18	

Indeed, previous studies have suggested alternative behavioural assumptions may be 19	
more realistic in some health behaviours (Djulbegovic, Hozo, Schwartz, & McMasters, 1999; 20	
Araña, León, & Hanemann, 2008; Ryan, Krucien, & Hermens, 2018; de Bekker-Grob et al., 21	
2012; Vass & Payne, 2017). For example, strong emotions are related to deviance from utility 22	
maximising behaviour (Araña et al., 2008), which may lead to biased results if RUM is used 23	
(Johnson, Meyer, Hardie, & Anderson, 1997). Further, behavioural heuristics such as 24	
satisficing are exhibited by individuals (Swait et al., 2002; Erdem, Campbell, & Thompson, 25	
2014; Genie, Krucien, & Ryan, 2021). These studies show that psychological assumptions 26	
may have substantial influence on decision-making and behavioural models in health 27	
economics. If health-based decisions are better described by alternative decision rules, policy 28	
evidence generated from DCEs may be improved. 29	

Previous studies introduced random regret minimisation (RRM) to health economics 30	
(Boeri et al., 2013; de Bekker-Grob & Chorus, 2013; Ryan et al., 2018; Paul, Berlin, Maessen, 31	
& Valtonen, 2018; Dennis, Ajewole, Bergtold, & Schroeder, 2020; de Bekker-Grob, 32	
Donkers, Bliemer, Veldwijk, & Swait, 2020; Buckell et al., 2021). These studies indicate that 33	
whilst RUM is a good general assumption, allowing for RRM behaviours can offer improved 34	
model performance in some cases. In addition, RRM may generate different, policy-relevant 35	
explanations of behaviour, and may uncover that different individuals are best described by 36	
different decision rules (Boeri et al., 2013; de Bekker-Grob & Chorus, 2013; Buckell et al., 37	
2021). RRM model outputs differed, such as predicted choice shares (Dennis et al., 2020).  38	

This study extends this literature by introducing Decision Field Theory (DFT) 39	
(Busemeyer & Townsend, 1993) to health economics as an alternative decision rule, and 40	
compares DFT to RUM and RRM. Studies call for further experimental models in health (de 41	
Bekker-Grob & Chorus, 2013), including DFT models (Vass & Payne, 2017). Evidence from 42	

	
1 Recent reviews indicate around 600 choice modelling studies in health economics, of which fewer than ten use RRM.  



behavioural economics and eye-tracking data in health-based DCEs shows the presence of 1	
behavioural anomalies and context effects (Ryan et al., 2018), which DFT may better explain 2	
(Roe et al., 2001). In transport economics, comparisons showed DFT outperformed RUM 3	
and RRM in traditional DCEs (Hancock et al., 2018; Hancock, Hess, Marley, & Choudhury, 4	
2021). Thus, in some cases, DFT may better explain health choice behaviours than existing 5	
paradigms. It should be noted that should a modeller specifically be using choice models to 6	
derive policy and practice relevant measures, such as marginal rates of substitution (MRS) 7	
and WTP, then a move towards any model that is not a RUM model is inadvisable. The work 8	
in this article is more relevant to an analyst specifically interested in providing a better 9	
account of behaviour. However, certain key outputs (e.g. elasticities) can be derived, thus 10	
DFT is not merely just for model-fitting exercises. If one is willing to sacrifice some of the 11	
key benefits of RUM, then a move towards DFT models becomes possible. 12	

In the next section, we set out DFT and motivate our modelling approach. In Section 3 13	
we describe the data and models. Section 4 presents the results. Sections 5 discusses, and 14	
Section 6 concludes.  15	

2          Decision Field Theory (DFT) for health economics 16	

DFT models (Busemeyer & Townsend, 1993), from the class of sequential sampling models 17	
(SSMs), (Busemeyer, Gluth, Rieskamp, & Turner, 2019) are designed as cognitive models 18	
of decision making. DFT is based on psychological principles (Busemeyer & Diederich, 19	
2002), and explicitly attempts to capture the choice deliberation process. It is assumed that 20	
decision-makers update preferences for alternatives over time. By attending to a single 21	
attribute (across alternatives) of the choice task at each moment in time, decision-makers 22	
update their previous preferences with an additional “valence” towards each alternative, 23	
derived from the set of values for that attribute. Preferences accumulate through repeated 24	
updates over time with different attributes. A choice is made when the preference for one of 25	
the alternatives reaches an internal preference threshold, or when an external factor is 26	
reached, such as a time step limit. 27	

DFT is a probabilistic-dynamic model of decision-making (Busemeyer & Townsend, 28	
1993) in which preferences accumulate over time, unlike RRM and RUM models 29	
(probabilistic-static). This model was initially applied to binary decision-making under 30	
uncertainty, such as gambles (Townsend & Busemeyer, 1995), and is frequently applied to 31	
controlled laboratory settings, such as eye-tracking experiments (e.g. Noguchi & Stewart, 32	
2014), to understand the comparison of alternatives. 33	

Extensions to multi-attribute (Diederich, 1997), and multi-alternative choice scenarios 34	
(Roe et al, 2001), allow for further applications2. These advances, together with the 35	
psychological approaches adopted by DFT, allow cognitive phenomena unexplained by 36	
RUM to be modelled (Berkowitsch, Scheibehenne, & Rieskamp, 2014), such as context 37	
effects (similarity, attraction, and compromise) (Roe et al., 2001). Moreover, this allows 38	
violations of standard RUM assumptions to be overcome, such as the independence of 39	
irrelevant alternatives (IIA) assumption3 (Berkowitsch et al., 2014). Applications therefore 40	

	
2 DFT models almost exclusively study choices between two to three alternatives. More recently, Hancock et al. (2021b) implement DFT 
with four alternatives.  
3Advanced RUM models (e.g., probit, mixed multinomial logit) do relax this assumption. 



frequently include the study of context effects (e.g. Trueblood et al., 2013), aimed at 1	
understanding the cognitive decision-making process in survey tasks.  2	

However, DFT is not frequently used to understand riskless choice (Hancock et al., 2018) 3	
or decision-making in discrete choice experiments, despite its flexibility in modelling context 4	
effects. Recent applications of DFT have successfully introduced this model to general 5	
decision-making tasks, with a larger number of attributes4, but maintain a focus on the 6	
modelling of psychological context effects, consumer choice behaviour, or transport 7	
economics. 8	

Some of DFT’s advantages are also demonstrated by RRM models, such as the 9	
compromise effect (Chorus, 2012a) and relaxation of the IIA assumption (Chorus, 2012b), 10	
but DFT models still differ from RRM models. First, due to their dynamic nature. RRM 11	
models are characterised by a static valuation of regret. Further, DFT models depart from the 12	
mathematical logit framework, while RRM models remain within this framework.  13	

Comparisons of DFT models to traditional decision-making models are limited, partly 14	
due to the perceived computational complexity of the model (Otter et al., 2008). In consumer 15	
choice, DFT performed well for out-of-sample prediction and when context effects were 16	
deliberately introduced, compared to RUM (Berkowitsch et al., 2014). For apartment choice, 17	
DFT was also shown to outperform RUM (Cohen, Kang, & Leise, 2017).  18	

Recent methodological extensions enable further comparisons of DFT to other decision 19	
rules in surveys or DCEs. For example, the derivation of choice probabilities  at any response 20	
time allows for a finite response time (external threshold) to be estimated. Other extensions 21	
include alternative-specific constants and deterministic heterogeneity (Hancock et al., 2018). 22	
In a comparison of DFT to RUM and RRM for a DCE of transport mode choice, DFT 23	
improved model fit and out-of-sample forecasts (Hancock et al., 2018). Further, a scale-24	
invariant DFT allows for better incorporation of deterministic interactions, and outperformed 25	
RUM models (Hancock et al., 2021).  26	

In this study, comparisons are made in the context of risky health behaviour. DCEs are 27	
frequently used to inform risky health behaviours such as tobacco, food choices, or alcohol 28	
(Regmi, Kaphle, Timilsina, & Tuha, 2018; Biondi et al., 2019; Pechey, Burge, Mentzakis, 29	
Suhrcke, & Marteau, 2014). Eye-tracking data in health-based DCEs motivates the use of 30	
DFT in health, showing the presence of behavioural anomalies and context effects (Ryan et 31	
al., 2018). Studies call for the introduction of DFT in health (Vass & Payne, 2017), or 32	
highlight the need for alternative decision-making models (de Bekker-Grob et al., 2012). 33	
Specifically, Busemeyer, Dimperio, & Jessup (2007) illustrate how complex emotional-34	
cognitive interactions in smoking behaviour may allow for DFT to conceptually explain 35	
decisions. More generally, studies call for cognitive approaches allowing for context effects 36	
or time pressures to enhance choice models in economics (e.g. Otter et al., 2008). Departures 37	
from RUM are well-documented in risky health behaviours (Cawley and Ruhm, 2011). 38	
Further, modelling non-RUM choice behaviour enhanced understanding of choices in 39	
tobacco, food choices, and HIV prevention; and even changed policy recommendations in 40	
tobacco (cf. Boeri et al., 2013; Buckell & Sindelar, 2019; Biondi et al., 2019; Buckell et al., 41	

	
4 Berkowtitsch et al. (2014) use two to five attributes, Hancock et al. (2018) use two to six attributes. 



2021). Alternative behavioural models may therefore be especially applicable to risky health 1	
choices, and may further inform policy or public health interventions. 2	

In addition, studies suggest that individuals apply different decision rules to choice 3	
making (decision rule heterogeneity), leading to different models best predicting different 4	
behaviour (e.g., de Bekker-Grob & Chorus, 2013). Some individuals may minimise regret, 5	
for example, while others are more utility-minded (Smith, 1996). de Bekker-Grob & Chorus 6	
(2013) apply a hybrid RUM-RRM model, while Boeri et al. (2013) model decision rule 7	
heterogeneity based on observed sociodemographic characteristics. Both studies find 8	
evidence for improved behavioural understanding, and de Bekker-Grob & Chorus (2013) 9	
show improved model fit, but these applications do not allow for simultaneous modelling of 10	
multiple decision rules.  11	

To incorporate multiple decision rules or heuristics, studies have previously proposed and 12	
implemented latent class models (Hensher et al., 2009; Chorus, 2010). In methodological 13	
applications, Hess, Stathopoulos, & Daly (2012) show that latent class models may 14	
incorporate decision rule heterogeneity, in addition to taste heterogeneity. More recently in 15	
health settings, Dennis et al. (2020) allow for a decision rule heterogeneous RUM-RRM 16	
model, improving model fit and behavioural understanding. Buckell et al. (2021) take a 17	
similar approach using multiple datasets, finding roughly equal proportions of individuals 18	
demonstrating RUM and RRM behaviour. By introducing DFT to decision rule 19	
heterogeneous models, the potential for finding decision rule heterogeneity increases, as does 20	
the prospect of improved behavioural understanding.  21	

Therefore, this study aims to empirically compare DFT to RUM and RRM in the context 22	
of risky health choices, specifically in tobacco and vaccination. Further, latent class, decision 23	
rule heterogeneous models are applied to extend understanding of decision rule heterogeneity 24	
in health-based choices.  25	

3 Methods 26	

3.1 Data 27	

This was a secondary analysis of two DCEs. The first is of cigarettes and e-cigarettes 28	
conducted in 2017 in the United States (Buckell, Marti, & Sindelar, 2019). Eligible 29	
participants were current smokers and recent quitters, aged 18-64, residing in the US. The 30	
choice experiment was a best-best DCE, designed using a Bayesian D-optimal design, in 31	
which respondents chose their first and second preference out of a six-alternative choice set: 32	
two cigarette products, two e-cigarette products, and two opt-outs. For this study, only 33	
respondents’ first preference was analysed as methods investigating ranked alternatives were 34	
not available for DFT. Respondents made 12 choices each. 2,031 participants were recruited 35	
online, and were matched to the population on age, gender, and region using data from the 36	
2014 Behavioural Risk Factor Surveillance System, a nationally representative survey 37	
collecting data on behavioural risk factors (Centers for Disease Control and Prevention, 38	
2020). Descriptive characteristics are presented in Table 1. Cigarettes and e-cigarettes were 39	
described by four attributes selected to represent prices/flavours in the US market (Table 2A). 40	
An additional questionnaire collected sociodemographic data and smoking-related variables 41	
(described in detail in Buckell et al. 2019). 42	



The second dataset is from a DCE of COVID-19 vaccination uptake choices in the UK 1	
conducted between July and October 2020 (Hess et al., 2022). A sample from the general 2	
public comprised 2,147 individuals. Respondents were aged between 21 and 75; descriptive 3	
statistics are presented in Table 1. A D-efficient design yielded 36 rows in 6 blocks; 4	
respondents made 6 choices each. Individuals chose between paid vaccines, free vaccines, 5	
and not to have a vaccine. Vaccine alternatives were described by risk of infection, risk of 6	
illness, risk of mild side effects, risk of severe side effects, duration of protection, population 7	
coverage, travel restrictions, waiting time, and cost. The experimental design is presented in 8	
Table 2B.   9	

[Insert Table 1 here] 10	
[Insert Table 2 here]	11	
3.2 Modelling approaches 12	

RUM, RRM, and DFT modelling approaches are presented below. To account for taste 13	
heterogeneity, modelling approaches were compared between base (attribute-only) models, 14	
models with deterministic taste heterogeneity, and latent class models. 15	

For tobacco data, models included the health and nicotine attributes (using dummy 16	
coding), the price attribute (continuous) and alternative-specific constants (ASC) which were 17	
interacted with the flavour attribute to create flavoured-product-specific constants (e.g. 18	
“menthol cigarettes” or “fruit e-cigarettes”) as per previous research (Buckell et al., 2019). 19	

Models with deterministic taste heterogeneity included interactions of sociodemographic 20	
covariates and attributes. ASCs were interacted with age, sex, ethnicity, and smoking status 21	
(Zare & Zheng, 2021; Hoffman, Salgado, Dresler, Faller, & Bartlett, 2016; Czoli, Goniewicz, 22	
Islam, Kotnowski, & Hammond, 2016). The health attribute was interacted with smoking 23	
status (Czoli et al., 2016; Shang, Huang, Chaloupka, & Emery, 2018). Nicotine was 24	
interacted with sex and smoking status (Zare, Nemati, & Zheng, 2018), and price and income 25	
were interacted (Townsend, Roderick, & Cooper, 1994) to represent the income elasticity of 26	
demand δ: 𝑃𝑟𝑖𝑐𝑒!	 ∙ 	 (

!#$%&'!
&'(!)#(!#$%&')

),. Latent class models included two latent classes, with 27	

constant-only class allocation. 28	

For vaccine data, all attributes were continuously coded, except for international travel 29	
restrictions, which was dummy-coded. A constant was included to account for horizontal 30	
position bias (effects-coded). Deterministic heterogeneity by age, gender, comorbidities and 31	
household size was examined with interaction terms (Hess et al., 2022); and the cost of 32	
vaccine was interacted with income as above. Latent class models included two latent classes, 33	
with constant-only class allocation5. 34	

	
5 Hess et al. (2022) used a latent class model with three nested logits, which achieved a better model fit than the two class models used here. 
However, two class models were used in this work to allow for a direct comparison with the results for the smoking dataset. Furthermore, 
equivalent ‘nested’ DFT models allowing for correlation across alternatives do not currently exist, thus a fair comparison against nested 
logit counterparts is not possible. A study of the results of decision rule heterogeneous models with three classes is beyond the scope of this 
work. 

	



Random utility maximisation (RUM) 1	

In RUM, individuals were assumed to maximise the anticipated (latent) utility associated 2	
with each alternative. Choice probabilities were modelled as (McFadden, 1974): 3	

𝑈!-. = 𝑉!-. + 𝜀!-. = 𝛼!-. + 𝑥!-./ 𝛽 + 𝜀!-.																															(1)	4	

𝑤𝑖𝑡ℎ		𝑝!-. =
𝑒0!"#

∑ 𝑒0!$#&
	𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔	𝜀!-. 	∼ 𝐸𝑉	𝑇𝑦𝑝𝑒 − 𝐼	𝑖𝑖d						(2) 5	

Here, Uijt represents the utility of decision-maker i, for alternative j, at choice scenario 𝑡 =6	
1,… , 𝑇. Utility comprises a deterministic component, Vijt, and a random component, εijt. αijt 7	
represents the ASC, xijt represents attribute levels and β are estimated parameters. Choice 8	
probabilities pijt were derived (Maddala, 1983), assuming that error term ε is independently and 9	
identically distributed (iid) with a Type-I Extreme Value (EV) distribution, representing the 10	
probability of alterntive j being chosen by individual i in scenario t. The opt-out alternative was 11	
specified by its ASC αj only. 12	
Random regret minimisation (RRM) 13	

In the RRM model (Chorus, 2010), individuals were assumed to minimise the anticipated 14	
(latent) regret associated with each alternative.  15	

For a given alternative, each attribute is compared to other alternatives’ attributes. Sub-16	
optimal performance in a chosen alternative/attribute results in regret, and total regret is the 17	
summation of regrets over alternatives/attributes:		18	

𝑅𝑅!"# = 𝑅!"# + ε!"#																																																																																																																																									(3)	19	

												= ) 𝑙𝑛 ,1 + 𝑒𝑥𝑝1α!$# − α!"#45 +
%

$&"

))ln(1 + exp ,β'1x()*' − x(+*'45
,

-./

+ ε(+*						(4)
0

)&+

 20	

Here, RRijt represents total regret of alternative j, with Rijt representing deterministic 21	
regret, and error term εijt, iid Type-I EV distributed, representing random regret. Regret 22	
depends on both xijtk, the value of attribute k in alternative j, and ximtk, the attribute value of 23	
alternative m. The ASCs were included following the premises of regret minimisation 24	
(Chorus, 2012a), because product flavours (or paid/free vaccines) may create anticipated 25	
regret, even if incorporated in the constant6. Categorical variables were included using 26	
dummy coding, but in line with the assumptions of regret minimisation (Chorus, 2012a, 27	
p37)7. 28	

Decision field theory (DFT) 29	

In DFT, each alternative develops a preference value over time, based on its attributes. At 30	
each preference-updating step, decision-makers attend to a specific attribute, evaluating each 31	
alternative’s performance with respect to that attribute. Evaluated outcomes are then added to 32	
preferences in a “valence vector” (Roe et al., 2001). Further, preference updates are 33	

	
6 Further, this specification ensures that when the operator ln(1 + exp(...)) is replaced by ln(0 + exp(...)), the RRM model reduces to the RUM 
model (Hess & Chorus, 2015), ensuring comparability. 
7 In further analyses, we explored the use of the µ-RRM model (van Cranenburgh, Guevara & Chorus, 2015), but this model collapsed to a 
RUM model for both datasets (high estimates of µ, low profundity of regret). This follows from the RUM being preferred to RRM base 
models in both datasets (Table 4); that is, when RUM fits the data better than RRM, a model that generalises both will tend to the preferred 
decision rule. 



influenced by a feedback matrix, which controls the strength of competition between 1	
alternatives and the memory of preferences at the previous preference-updating step 2	
(Hancock et al., 2018).   3	

We used a DFT model with an external threshold and scaling parameters, as set-out by 4	
Hancock et al. (2021). In an external threshold model, the alternative with the highest 5	
preference is chosen after an estimated total number of preference-updating steps8. The scale-6	
invariance of this DFT model ensures that comparison of parameter ratios to other models is 7	
valid; ratios of the scaling parameters represent the relative importance of attributes.  For 8	
individual i in choice scenario t (omitting i,t subscripts for readability), this is specified as 9	
(Hancock et al., 2021): 10	

 Pτ = S · Pτ−1 + Vτ (5) 11	

 P0 = [α1,...,αj,...,αJ]′ (6) 12	

 S = IJ − ϕ2 · exp(−ϕ1 · D2) (7) 13	

 𝐷𝑗𝑚1 = ∑ (𝛽𝑘	 · 	 (𝑥𝑖𝑗𝑡𝑘	− 	𝑥𝑖𝑚𝑡𝑘))12
345 : entries of D (8) 14	

 Vτ = C · M · B · Wτ + ετ ,with  ετ,j ∼ N(0,σ2) iid (9) 15	

Here, Pτ represents the preference vector at preference-updating step τ, of length J 16	
(number of alternatives). S represents the preference-updating matrix, defined as the identity 17	
matrix of size J (IJ), with a measure of distance D subtracted. This distance matrix is given 18	
by the Euclidean distance between alternatives’ attribute values xijtk, multiplied with an 19	
attribute importance scaling coefficient βk, for each attribute k. 20	

At preference-updating step τ = 0, P0 represents initial preferences toward each 21	
alternative, which could include ASCs α, or may be fixed to 0. Instead, an additional attribute 22	
(𝐾 + 1) specifying “attendance to other attributes” may be included to incorporate ASCs 23	
(Hancock et al., 2018). In preliminary analyses, specification of initial preferences P0 strongly 24	
improved model fit, and was used within further models. 25	

Vτ  represents the “valence vector”, denoting added preferences after deliberation at 26	
preference-updating step τ. This was defined as the product of matrix C, a matrix rescaling 27	
preferences to total zero9, matrix M, containing attribute values for each alternative, and 28	
vector W, containing the attention weights for each attribute. This weights vector indicates 29	
which single attribute is attended to at each preference-updating step, denoted by a vector of 30	
zeroes, with one entry of value 1 if this attribute is attended to at this step. The single selected 31	
attribute for deliberation follows from a uniform draw, where an attribute is selected with 32	
probability wk (weights). 33	

Previous applications of DFT estimated weights wk for each attribute. Here, these are 34	
fixed to 𝑤3 = 1/𝐾	∀	𝑘, which may be a reasonable assumption in experimental settings, such 35	
as DCEs (Hancock et al., 2021). Instead, each attribute value in matrix M is multiplied by 36	
scaling factors in matrix B, a diagonal matrix with scaling coefficients β on the diagonal 37	
(which results in DFT being scale-invariant, see Hancock et al. (2021)). These parameters 38	

	
8 As the number of preference-updating steps is estimated, the choice response times are not required to estimate the choice probabilities, 
unlike alternative DFT specifications that require such information for estimation.   
9 With elements cjj = 1 and cjm = !

"#!
∀ m ≠j, of size J x J 



operate as a mapping from actual (objective) attribute values to individual preferences 1	
(effectively its utility/subjective value), which will depend on the decision-maker. 2	
Coefficient β is then comparable (though not equivalent) to marginal utility coefficients in 3	
RUM. Hence, scale-invariant DFT is attractive for comparison of preferences or relative 4	
importance, and allows for the interaction of preferences and sociodemographic variables 5	
(Hancock et al., 2021). 6	

Further, ετ represents a normally (iid) distributed random error with variance σ2, fixed to 7	
1 for identification purposes. Preference-updating steps τ range from 0 to T, a finite number 8	
of total preference-updating steps, restricted to Τ ≥ 1. A larger T indicates a longer 9	
deliberation process with more attributes likely to be considered. A smaller T indicates more 10	
random deliberation and heterogeneity in attribute consideration. 11	

Parameters ϕ1 and ϕ2 regulate the psychological aspects of decision-making, such as 12	
context effects. The similarity effect is controlled by ϕ1, influencing the level of competition 13	
between similar attributes, restricted to be positive (𝜙5 > 0). Memory decay is influenced 14	
by ϕ2. A larger ϕ2 reduces the diagonal elements of S to 0, such that previous preferences are 15	
disregarded. For stability of the estimation procedure, ϕ2 is additionally restricted between 0 16	
and 1/J. Estimated parameters are β,α,ϕ1,ϕ2 and T. 17	

It should be noted that in both datasets, some attributes were categorical, which are 18	
scarcely used in DFT models. Moreover, previous DFT models with categorical attributes 19	
(Berkowitsch et al., 2014) differed from the current scale-invariant version. The inclusion of 20	
separate DFT attributes for each dummy coded attribute level would result in a large number 21	
of additional attributes, attended to randomly following the stochastic process induced by 22	
weights vector W. Instead, current model specifications pre-multiply the scaling parameters 23	
β and dummy variables, to create level-specific scaling value (Appendix A). The latter 24	
specification may conceptually be closer to the DFT behavioural paradigm, as decision-25	
makers now attend to categorical attributes at each timestep, rather than dummy variables for 26	
an attribute level, and was therefore preferred.  27	

In preliminary analyses, psychological parameters either did not have a substantial impact 28	
or were not significant, and were excluded from further analyses. Previous DFT applications 29	
indicated only limited value of ϕ parameters in explaining DCE-based decisions, resulting in 30	
frequent restrictions of ϕ = 0 (Hancock et al., 2018). 31	

The estimation of choice probabilities under a DFT model does not rely on simulation of 32	
preference updating steps nor knowledge regarding attribute attendance order. This is 33	
because choice probabilities are derived from the expectation and covariance of preference 34	
values, 𝑃t, after t updating steps (Roe et al., 2001). By expanding Equation 5, Preferences Pτ 35	
are defined as: 36	

𝑃t =	∑ 𝑆8𝑉t98t9/
8.: + 𝑆t𝑃:	           (10) 37	

Next, as attribute weights 𝑤3 are stationary, and ετ	normally	distributed, Wτ  and Vτ are 38	
stationary stochastic processes with 𝐸[𝑉6] = 𝜇 = 𝐶 · 𝑀 · B · 𝑊	(Roe et al., 2001), allowing 39	
the derivation of E[Pτ] and Cov[Pτ].10 For E[Pτ], we derive (Hancock et al., 2021): 40	

	
10 It should be noted that the expectation and covariances here incorporate the expectation and covariance of Wτ, which account for the 
impact of attribute attendance order.  



𝐸[𝑃t] = ∑ 𝑆8𝜇;9/
8.: + 𝑆t𝑃: = 1𝐼< − 𝑆4

9/1𝐼< − 𝑆t4µ+ 𝑆t𝑃:          (11) 1	

Further, we denote: 2	

𝐶𝑜𝑣[𝑃;] = W; = ∑ 𝑆8Φ𝑆8′;9/
8.: 	            (12) 3	

A closed form expression for W6 exists, for which we refer to the derivations in Hancock et 4	
al. (2018).  5	

Subsequently, Pτ is multivariate normal distributed, and the probability of alternative j 6	
being chosen out of the choice set CS consisting of J alternatives at the final preference 7	
updating step T is given by (Hancock et al., 2021): 8	

𝑝"=>? = 𝑃𝑟𝑜𝑏 M𝑃@[𝑗] = max
)∈BC

𝑃@[𝑚]R	(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	Τ)		 					     (13) 9	

=	∫ exp[−(𝑃Z@ − Γ@4D Λ@9/(𝑃Z@ − Γ@)/2	]/(2𝜋|Λ@|:.F)𝑑𝑃@a	
	
G!HI: 		 											(14) 10	

where	𝑃h7 = i𝑃7[𝑗] − 𝑃7[1], … , 𝑃7[𝑗] −	𝑃7[𝐽]l,		Γ7 = 𝐿- ∙ 𝐸[𝑃7]	and	Λ7 = 𝐿-W6𝐿- ′,	with	𝐿- 	the 11	
matrix constructing differences between the preference of the alternative j and other 12	
alternatives, consisting of a column vector of ones in column Ij and the negative identity 13	
matrix of size J-1, such that for j=1: 14	

𝐿5 = p

1 −1 0 … 0
1 0 −1 ⋱ ⋮
1 ⋮ ⋱ ⋱ 0
1 0 … 0 −1

s		 	 	 										(15)	15	

	16	

3.3 Comparison of modelling approaches 17	

Modelling approaches were compared in base (attribute-only) models and taste 18	
heterogeneous models using log-likelihood, AIC, BIC and Vuong non-nested likelihood ratio 19	
tests (Vuong, 1989; Hensher, Rose, & Greene, 2015). As models were non-nested, the Vuong 20	
test indicated the statistical significance of difference in model fit between decision rules 21	
(Hensher et al., 2015), with test-statistic V defined as (Vuong, 1989): 22	

     𝑉 = 89
%

&'%
(∑ 8!! ;89)(/√#

							 	 	 			(16)	23	

ν! = 𝑙𝑜𝑔(𝐿)!,(?% − 𝑙𝑜𝑔(𝐿)!,(?( 				           (17) 24	

where log(L)i,dr1, log(L)i,dr2 are the contributions of individual i to the overall log-likelihood of 25	
models with decision rule dr. Under the null hypothesis that models are equally close to the 26	
“true” model, V has a standard normal distribution. A test statistic of 𝑉 ∈ (−1.96,1.96) does 27	
not reject the null, while 𝑉 < −1.96	(𝑑𝑟1) and 𝑉 > 1.96	(𝑑𝑟5) provided statistical evidence 28	
in favour of either model (Hensher et al., 2015). 29	

A sensitivity analysis investigated the impact of linearity assumptions on covariates. DFT 30	
may incorporate non-linear effects in continuous variables to some extent, even if attributes 31	
are included continuously, because of its dynamic nature. In contrast, the RUM models 32	
applied do not allow for non-linearities in continuous variables. A difference in model fit 33	
between DFT and RUM may therefore arise due to non-linear attribute effects, rather than 34	



behavioural assumptions. Models were estimated with all covariates categorically coded, or 1	
all variables continuously coded where possible. This allowed the investigation of robustness 2	
to alternative linearity assumptions. If the difference in model fit between decision rules 3	
remained unchanged, behavioural assumptions were more likely to have driven differences. 4	
If models performed similarly, non-linearities may have driven initial differences. 5	

Choice model outputs: Relative importance 6	
We use parameter ratios as a measure of “relative importance”, but not as a MRS. Estimates 7	
of the marginal rate of substitution (MRS) cannot be obtained from DFT models. One reason 8	
for this is that the trade-offs between attribute values are dependent on the choice task at 9	
hand. Preference values for alternative j depend not only on attributes xij, but also on the 10	
other attribute values xim of unchosen alternatives (as is the case for RRM models). The 11	
probabilities for a chosen alternative in a DFT model therefore depend on the values of other 12	
alternatives’ attributes, introducing a choice-set dependency. Parameter ratios must be 13	
interpreted conditional on the choices made by the consumer at the individual level. This 14	
context dependency prevents derivation of a MRS that holds for all changes in attribute 15	
values. Hence, welfare measures and economic model outputs such as WTP cannot be 16	
derived for consumers.  17	

In addition, the random and sequential attribute attendance in DFT models adds a 18	
covariance between preference values of different alternatives. A change in one attribute could 19	
offset a change of another within an average choice task (trial), but the total preference at the 20	
end of deliberation is not always the same. A trade-off occurs in expected valence levels 21	
(Equation 9), but cannot be interpreted as a MRS in the overall probability. Instead, we note 22	
that the relative importance estimates must be interpreted as a trade-off over expected valence, 23	
and thus also over average attribute attendance. Further detail is provided in Appendix D. 24	

However, as parameter ratios are scale-free and represent inferred relative importance of 25	
attributes across all models (de Bekker-Grob & Chorus, 2013; Hancock et al., 2018), they 26	
can be compared. Appendix D sets this out in detail, also giving examples of indifference 27	
curves under DFT, RRM and RUM.  28	

Relative importance between price, a direct policy-making instrument, and other 29	
attributes were computed. For tobacco, a change in levels was used for categorical attributes. 30	
Hence, the relative importance of life years lost (10 to 2 years) to price, and nicotine (medium 31	
to none) to price, respectively, was compared between decision rules, with relative 32	
importance (RI) defined as: 33	

𝑅𝐼(?,! =
β(?,!,3
β(?,!,@

																																																															(18) 34	

where β represents the parameters of attributes k and l for decision rule dr. 35	

Relative importance was estimated in base models, with standard errors (SEs) and 36	
significance tests for relative importance differences between decision rules presented. SEs 37	
were derived using bootstrap methods (Efron, 1982). Note that traditional hypothesis tests 38	
for equality of parameters (ratios) between non-nested models are non-trivial, as 39	
cov(βRUM,k,βDFT,l) ∀ k,l is unknown after estimation. Given the data, model outputs made 40	
separately from both decision-making models were likely positively correlated. Bootstrap 41	
methods readily account for this correlation structure of relative importance, and were 42	



therefore preferred over the more frequently used delta method in this setting. SEs were 1	
derived using 200 paired bootstrap draws without asymptotic refinement. A block bootstrap 2	
at individual level was performed to account for the panel structure of the data. Bootstrapped 3	
SEs were presented. Next, two-sided asymptotic hypothesis tests were conducted for the 4	
difference in relative importance between decision rules using bootstrapped SEs. The 5	
bootstrap was potentially limited by the low number of draws, but further bootstraps were 6	
prevented by the computational intensity of DFT models. This may cause loss of power 7	
(Davidson & MacKinnon, 2000), or non-normality11. Tibshirani & Efron (1993) argue that 8	
200 bootstraps are sufficient, while others argue for 348 bootstraps in hypothesis tests at 5%-9	
level to maintain sufficient power (Andrews & Buchinsky, 2000; Cameron & Trivedi, 2005). 10	
The distribution of bootstrapped estimates was inspected for stability/normality after 200 11	
draws. 12	

In models with deterministic heterogeneity bootstrapping could not be performed due to 13	
computational complexity. This prevented derivation of subsequent hypothesis tests. In a 14	
sensitivity analysis, relative importance was derived, but with delta-method SEs (Daly, Hess, 15	
& de Jong, 2012). Mean relative importance (𝑅𝐼(?������ = 	 5

#
∑ 𝑅𝐼(?,!! ) was compared, as estimates 16	

differed over individual decision-makers due to sociodemographic interactions. Estimates 17	
were compared to base models to test robustness of results. 18	

Choice model outputs: Predicted choice shares 19	

Predicted choice shares were derived in policy scenarios, alongside choice shares at 20	
baseline. Predicted choice shares were computed as the sample average of each alternative’s 21	
probability (e.g. for tobacco: cigarette, e-cigarette, and opt-out) (Hensher et al., 2015). 22	

In base models, bootstrapped SEs, and subsequent p-values of hypothesis tests for 23	
difference between estimates were presented for DFT and RRM, compared to RUM. In a 24	
sensitivity analysis, estimates were presented in models with deterministic heterogeneity 25	
without hypothesis tests, as before, and compared to base models to assess robustness. Here, 26	
SEs were obtained from 200 parameter draws of the estimated multivariate normal 27	
distribution (Krinsky & Robb, 1986). 28	

Choice model outputs: Elasticities 29	

Elasticities were averaged over all scenarios and decision-makers (i.e. sample 30	
enumeration). As earlier, elasticities were derived in base models with bootstrapped SEs and 31	
hypothesis tests for elasticity difference between decision rules presented, comparing 32	
DFT/RRM to RUM. In a sensitivity analysis, elasticities were derived in models with 33	
deterministic heterogeneity with simulated SEs (200 Krinsky-Robb draws) and no 34	
significance tests. 35	

For the vaccine choice data, elasticities were derived for continuous attributes. As choices 36	
were unlabelled, mean direct elasticities were calculated over vaccines A and B (Thiene, 37	
Boeri & Chorus, 2012), as elasticities could not be interpreted separately.  38	

Elasticities could not be derived for categorical attributes in the tobacco choice 39	
experiment, as they only hold for small changes. Pseudo-elasticities, defined as the change 40	

	
11 This remains relevant, as asymptotic tests were performed (MacKinnon, 2006). 



in probability of an alternative being chosen (under any of the models) following a change in 1	
(dummy) attribute levels, were therefore derived for tobacco attributes (Washington, 2	
Karlaftis, & Mannering, 2003): 3	

𝐸!-. =
𝑃𝑟𝑜𝑏i𝑦!-. = 1�𝑥!-3. = 1l − 𝑃𝑟𝑜𝑏i𝑦!-. = 1�𝑥!-3. = 0l

𝑃𝑟𝑜𝑏i𝑦!-. = 1�𝑥!-3. = 0l
																				(19)	4	

Hence,	𝐸!-. ⋅ 100 is interpreted as the percentage change in the probability of choosing 5	
alternative j, by individual i, when attribute k changes from 0 to 1 in alternative j (direct 6	
elasticity). Cross elasticities were similarly derived, but reflect responsiveness of choice for 7	
one alternative, after attribute change in another alternative.  8	

3.4 Latent class DFT: Taste and decision rule heterogeneity 9	

DFT models do not frequently incorporate taste heterogeneity. Previous specifications 10	
incorporated deterministic interactions or mixing distributions (Hancock et al., 2018). Here, 11	
we extend DFT to a latent class model, which has not previously been applied. The latent 12	
class log-likelihood was given by (Greene & Hensher, 2003):		13	

𝐿𝐿 =�𝑙𝑜𝑔��π$
$

⋅ 𝐿𝐶!(Ω$)�
A

!45

																																				(20)	14	

𝐿𝐶!(Ω$) =���𝑝!-.(Ω$)�
B!"#

-.

																																													(21)	15	

With	𝐿𝐶!(Ω$) representing the likelihood of class c at class-specific parameters Ω$, where 16	
individuals belong to one of C latent classes with probability πc. yijt takes the value of 1 if the 17	
alternative was chosen; 0 otherwise. Here, choice probabilities 𝑝!-.(ΩC) are now constructed 18	
using DFT models in each class, with Ω$  representing DFT parameters βDFT,α,ϕ1,ϕ2 and T as 19	
presented above, while further specifications of the log-likelihood remain similar to base 20	
DFT models.  21	

Single-decision-rule models imply a “one-size-fits-all” approach: all individuals followed 22	
either DFT, RUM or RRM to make decisions. Latent class, decision rule heterogeneous 23	
models were applied to allow multiple decision rules simultaneously (Hess et al., 2012; 24	
Buckell et al., 2021). In these models, latent classes allow for both taste and decision rule 25	
heterogeneity, where decision rule heterogeneity can be established by comparison to a 26	
single-rule counterpart (Hancock & Hess, 2021). 27	
Latent class models were presented with multiple and single decision rules, for RUM-RRM, 28	
RUM-DFT and DFT-RRM combinations. The log-likelihood was presented, given by (Hess 29	
& Stathopoulos, 2013; Hancock & Hess, 2021):		30	

𝐿𝐿 =�𝑙𝑜𝑔��π$
$

⋅ 𝐿𝐶!,(?)�Ω(?)��
A

!45

																																			(22)	31	

𝐿𝐶!,(?)�Ω(?)� =���𝑝!-..(?)�Ω(?)��
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-.

																																												(23)	32	



where πc denotes the probability of being in class c, 𝐿𝐶!,(?)(Ω(?)) represents the likelihood 1	
within class c with class-specific decision rule dr and class/decision-rule-specific parameters 2	
Ω(?), and 𝑝!-.(Ω(?)) the decision rule-specific probabilities. Decision rule heterogeneous 3	
models were compared to the best performing single-rule counterparts (out of two rules used) 4	
to assess the presence of decision rule heterogeneity. Absolute log-likelihood improvement 5	
and Vuong tests were presented. To investigate the implications of this model, relative 6	
importance was presented, but derived from latent class models (Appendix B). Estimates of 7	
the decision rule heterogeneous model were compared to single-rule models for RUM and 8	
DFT. 9	

4 Results 10	

4.1 Model fit 11	

Model fits for RUM, RRM and DFT modelling approaches are presented in Table 3. The 12	
optimal DFT specification excluded psychological parameters, which were insignificant in 13	
initial models (tobacco likelihood-ratio test: χ2(2) = 0.56,p = 0.7558). For brevity, focus is 14	
given to parameter estimate comparisons rather than the parameters themselves, but patterns 15	
of estimates in all models (detailed in Appendix C) were similar to those in previous research 16	
(Buckell et al., 2019; Hess et al., 2022).  17	

Turning to model fit, RUM and RRM performed similarly. For both datasets, RUM was 18	
slightly preferred over RRM in base models and models with deterministic heterogeneity. 19	
For tobacco, RRM was preferred in latent class models; and RUM for vaccines. For both 20	
datasets, DFT was preferred over other decision rules in all models. In base models, DFT had 21	
the best model fit, and with one additional parameter (the preference-updating steps), DFT 22	
also achieved the lowest AIC and BIC. In models with preference heterogeneity, the 23	
difference in model fit was reduced in both datasets, but DFT was still preferred by AIC and 24	
BIC. 25	

 [Insert Table 3 here]	26	

 27	
Vuong tests indicated DFT improved fit compared to RUM and RRM in base models 28	

(additionally, there was evidence to suggest RUM improved model fit compared to RRM).  29	
On tobacco data, Vuong tests were inconclusive for comparisons (Table 4A) with 30	
deterministic heterogeneity included, suggesting DFT did not improve performance 31	
compared to other decision rules with the inclusion of interactions. In contrast, latent class 32	
models did indicate significant differences. Here, there was evidence in favour of DFT 33	
compared to RUM (p=0.0143), but not for DFT compared to RRM (p=0.1270). Vuong tests 34	
favoured DFT over RUM and RRM in all cases for vaccine data (p<0.001) (Table 4B).  35	

[Insert Table 4 here] 36	
 37	

In a sensitivity analysis, the impact of alternative linearity assumptions on covariates was 38	
investigated (Table 5). A specification with all variables included categorically allowed for 39	
non-linearities in all decision-making models (for methodology, see Appendix A). The 40	
difference in model fit between DFT and RUM decreased in this specification compared to 41	
the main findings. This suggested that non-linear effects, which were better picked up by 42	
DFT, may have partly driven the main findings. However, linearity assumptions did not 43	



change the direction of results, as DFT was still the preferred decision rule in all 1	
specifications. 2	

[Insert Table 5 here] 3	

4.2 Comparison of model outputs 4	

Beyond model fit, relative importance was considered (see Appendix D for a discussion 5	
of relative importance measures across decision rules).  6	

For tobacco, the relative importance of nicotine and life years lost, compared to price, 7	
was presented in Table 6 for base models. Behavioural interpretations differed. In RUM 8	
models, for life years lost, the ratio implied that a change from 2 to 10 years of life lost may 9	
be offset by a 6.701 USD decrease in price to keep utility (and hence choices) constant. In 10	
RRM models, this change may create as much potential regret as a 7.064 USD price increase. 11	
Finally, in DFT models, the potential preference decrease from a change of 2 to 10 years of 12	
life lost, when considering this attribute, is similar to the potential preference decrease caused 13	
by a 5.024 USD price increase when considering price. Although these interpretations 14	
differed, comparisons could be made across models. Following the above, compared to 15	
RUM, decision-makers appeared to place less importance on life years lost compared to price 16	
when using DFT. For nicotine, estimates were more similar, especially between RRM and 17	
RUM (0.641 and 0.653, respectively), but were still lower using DFT (0.463). Comparing 18	
DFT to RUM, there was strong evidence against equal relative importance for both life years 19	
lost and nicotine (p<0.001 and p=0.0447, respectively).  20	

Relative importance also differed significantly between decision rules in the vaccine 21	
choice experiment. In these models, the same reductions in the risk of serious illness were 22	
valued equivalently in price by £27.40 for RUM, £27.86 for RRM, and £41.71 in DFT. DFT 23	
differed statistically significantly from RUM; RRM showed weak evidence for a difference 24	
from RUM. Reductions in duration of protection may be offset by decreases in price of £4.62 25	
for RUM, £5.00 for RRM, and £6.67 for DFT. Here, both DFT and RRM relative importance 26	
differed significantly from RUM. 27	

In a sensitivity analysis, mean relative importance was estimated for models with 28	
deterministic heterogeneity (not shown). Similar patterns were observed (but without 29	
hypothesis tests) suggesting results were robust to the model specification. 30	

[Insert Table 6 here] 31	

Predicted choice shares 32	

Predicted choice shares in policy scenarios were presented alongside choice shares at 33	
baseline in Table 7.  34	

For tobacco, compared to RUM, results significantly differed for DFT and RRM. When 35	
increasing all prices by 50%, DFT predicted a decrease in e-cigarette choice share to 34.1%, 36	
a decrease of 1.9 percentage points compared to baseline. In RUM models, this was only 37	
35.4%, a 0.5 percentage point decrease. Opt-out choice shares also differed, with DFT 38	
predicting a 20.7% share of opt-outs, representing a 7.6 percentage points increase compared 39	
to baseline. This was 18% in RUM, an increase of 5 percentage points. When only increasing 40	
cigarette prices by 50%, a similar pattern was observed. Again, DFT predicted a lower share 41	



of e-cigarettes than RUM, and a larger share of opt-outs. Comparing RRM to RUM, 1	
predictions were more similar, but still significantly differed.  2	

In the vaccine choice dataset, predicted choice shares were again significantly different 3	
between DFT and RUM, but not between RRM and RUM. For example, increasing vaccine 4	
prices by 50% resulted in a 3.6 percentage point decrease in paid vaccine choices for DFT 5	
and a 5.2 percentage point decrease in paid vaccine choices for RRM and RUM. The DFT-6	
RUM difference was statistically significant; the RRM-RUM difference was not. Overall, the 7	
results showed that predicted DFT policy responses significantly differed to RUM.  8	

In a sensitivity analysis, choice shares were predicted using models with deterministic 9	
preference heterogeneity. Choice shares were similar to models with homogeneous 10	
preferences, likely because predicted shares were aggregated. Hence, differences between 11	
decision rules appeared robust to other model specifications. 12	

Elasticities 13	

A presentation of elasticities is provided in Table 8. In absolute value, elasticities were 14	
highest for the life years lost attribute. In RUM models, the direct life-years lost elasticity of 15	
e-cigarette choice equalled 0.5239. This is interpreted as a reduction of life years lost from 16	
10 to 2 years leading to, on average, a 52.39% increase in the probability of e-cigarettes being 17	
chosen. The cross life years lost elasticity of cigarette choice was 0.2011. That is, the 18	
probability of cigarette choice decreases by 20.11% if the life-years lost from e-cigarettes 19	
decreases from 10 to 2 years. Tests of equal elasticities were performed for DFT and RRM, 20	
compared to RUM. Elasticities were similar for nicotine between decision rules. For other 21	
attributes, significant differences were found. Between RUM and DFT, elasticity differences 22	
were of a larger magnitude than between RRM and RUM. The strongest (significant) 23	
differences were obtained for price. DFT appeared significantly more price elastic 24	
(cigarettes: -0.1414 vs. -0.1158, and e-cigarettes: -0.1914 vs. -0.1634), and cross-price 25	
elasticities varied strongly for the opt-out choice (cigarettes: 0.4498 vs. 0.1843). For the 26	
vaccine data, direct elasticities significantly differed between RRM and RUM; for example 27	
the direct price elasticities (RUM: -0.0888; RRM: -0.0950). For DFT, only the direct price 28	
elasticity was significantly different from RUM (RUM: -0.0888; DFT: -0.0604). Contrary to 29	
tobacco results, DFT appeared less price elastic. Overall, the results showed elasticities 30	
significantly differed between decision rules, even if model fit was similar, such as between 31	
RUM and RRM. In a sensitivity analysis, similar variations were observed in models with 32	
deterministic heterogeneity (results not shown).  33	

[Insert Table 7 here] 34	

[Insert Table 8 here] 35	

4.3 Decision rule heterogeneity 36	

Finally, decision rule heterogeneous model fits are presented in Table 9. Multi-rule 37	
models significantly increased model fit compared to homogeneous counterparts for the 38	
tobacco choice experiment, showing evidence for decision rule heterogeneity. Model fit 39	
improved in RUM-DFT models, compared to DFT-only, but this was not significant for 40	
tobacco (p=0.1081, Table 9A). For tobacco, the strongest, significant gain in model fit was 41	
observed when combining DFT and RRM decision rules, compared to a 2-class DFT model. 42	



The RRM decision rule therefore contributed to the explanation of choice behaviour, despite 1	
its weaker performance in single-rule models.  2	

For vaccines, the 2-class DFT model remained preferred over all decision rule 3	
heterogenous specifications.  4	

[Insert Table 9 here] 5	

Decision rule heterogeneous models impacted model outputs. Relative importance was 6	
compared to single-rule models in Table 10. For tobacco, the composite estimate of RUM-7	
DFT relative importance of life years lost (-5.330) now appeared to lie in between single-rule 8	
RUM (-6.110) and DFT models (-4.521). This reflected both RUM-behaviour (higher 9	
relative importance) and DFT-behaviour (lower relative importance). This was not observed 10	
in the vaccine data, where relative importance of RUM-DFT model was outside the range of 11	
its single-class counterparts, e.g. for risk of serious illness, the RUM-DFT estimate of £18.08 12	
was outside of the range of 2-class RUM (£11.81) and 2-class DFT (£16.09) models. Finally, 13	
note that SEs increased for multi-rule estimates, likely because outputs represented pooled 14	
overall relative importance from multiple decision rules. 15	
[Insert Table 10 here] 16	

5 Discussion 17	

This study introduced DFT to health economics, in the context of risky health behaviours, 18	
and developed novel DFT models. Comparisons between DFT and other decision rules were 19	
made, introducing bootstrapped SEs and hypothesis tests for comparison. Model fit 20	
significantly improved using DFT compared to RUM. Model outputs differed significantly 21	
between decision rules, but were at times of small magnitude. The presence of decision rule 22	
heterogeneity was shown, and subsequent model outputs differed. The improved fit of these 23	
models is interpreted as better reflecting decision-making. 24	

Evidence was divided on whether DFT models with deterministic preference 25	
heterogeneity improved fit compared to RUM. In both datasets model fit improved, but this 26	
was not significant for tobacco data. Previous results also showed reduced improvement 27	
when including interaction terms (Hancock et al., 2018). However, it should be noted that 28	
DFT is designed to resemble the psychological decision-making process. The incorporation 29	
of interactions on scaling parameters in a DFT model may impose considerable complexity 30	
on the decision-making process at each preference-updating step, lowering psychological 31	
advantages, and reducing performance compared to other decision rules. In contrast, latent 32	
class DFT models maintain their simplicity within classes, while still allowing for preference 33	
heterogeneity. These models continued to outperform other decision rules. Therefore, the 34	
advantage of DFT may diminish when deterministic heterogeneity is present, but preference 35	
heterogeneity can still be incorporated through latent classes. 36	

Unlike psychological applications, deterministic interactions are often required to capture 37	
the tastes of individual decision-makers (Soekhai et al., 2019). This was the first application 38	
of DFT with many interactions between scaling parameters and sociodemographic 39	
characteristics. Previous applications introduced this, but had fewer interactions in different 40	



specifications or settings (Hancock et al., 2018, 2021)12. Moreover, the large number of 1	
parameters used here could be an extreme case. Most health-based DCEs may find fewer 2	
interactions sufficient, in which DFT performs well. 3	

Choice model outputs 4	

Relative importance differed between decision rules. Results were more significant than 5	
previous work in RRM models, which found no significant results (de Bekker-Grob & 6	
Chorus, 2013). There may be several reasons for this. First, few studies present test statistics 7	
for the comparison of estimates between decision rules. In health, de Bekker-Grob & Chorus 8	
(2013) derive test statistics for the comparison of parameter ratios, while most studies present 9	
point estimates only. When presented, SEs and hypothesis tests were derived using the delta 10	
method, while bootstrap methods were used in this application. These hypothesis tests fully 11	
incorporate the covariance structure of parameters between decision rules, while delta 12	
method based tests may represents only a lower bound of significance. Second, de Bekker-13	
Grob & Chorus (2013) indicated their small sample sizes (1,872 and 2,808 observations) may 14	
have influenced the significance of results, and highlight that larger studies may find 15	
significant differences. Both datasets here are much larger (24,372 and 12,882 observations). 16	
Third, this study provided estimates of relative importance for only two attributes. Using 17	
RRM, ratios appeared higher than when using RUM, but only repeated studies with more 18	
attributes can show whether a consistent pattern exists.  19	

Evidence was mixed on the directions of relative importance between decision rules. 20	
Previous applications found a lower importance of non-price attributes to price when 21	
assuming a DFT decision rule, compared to RUM and RRM (Hancock et al., 2021). This was 22	
true in the case of tobacco, but not in the case of vaccines. In line with this, decision-makers 23	
appeared more price elastic when following a DFT decision rule for tobacco data, but less 24	
price elastic for the vaccine choice data. 25	

Turning to predicted choice shares, a 50% price increase, analogous to a tax levy, resulted 26	
in a significantly lower prediction of e-cigarette shares in DFT models than RUM models. 27	
An earlier study with this dataset already indicated that RUM models overpredicted e-28	
cigarette choice compared to observed choice shares (Buckell & Hess, 2019). Although this 29	
study did not assess external validity, DFT predicted a lower e-cigarette choice share than 30	
RUM in two policy scenarios. When assuming DFT behaviour, model outputs seemed to 31	
mirror real-world behaviour more closely. Significance between decision rules was 32	
previously not assessed, but magnitudes of differences (1-2%) were similar (de Bekker-Grob 33	
& Chorus, 2013). Significant differences were observed between RUM and DFT for vaccine 34	
data, but whether that corrected a bias is unknown.  35	

Whilst it is not possible to derive WTP measures from DFT models, the above findings 36	
demonstrate two key points. Firstly, that DFT offers insights into the individuals’ deliberative 37	
decision-making processes which may give additional policy information that is not available 38	
under RUM (nor RRM). Secondly, that for a given dataset, there is nothing to prevent an 39	
analyst using DFT alongside RUM if measures such as WTP are required, as long as the 40	
results do not differ substantially across models. 41	

	
12 Hancock et al. (2018) did not use the scale-invariant DFT model (one interaction). Hancock et al. (2021) used revealed preference data 

(two interactions). 



 1	

Decision rule heterogeneity 2	

Mixed results were found on the presence of decision rule heterogeneity. For tobacco, the 3	
RRM model improved model fit when combined with DFT models, while it performed worse 4	
within single-rule analyses. A small, but substantial share of individuals may have followed 5	
regret-like behaviour. Accounting for multiple decision rules within the data may also 6	
substantially influence measures of relative importance. For vaccines, the 2-class DFT model 7	
performed strictly better than any model with multiple decision rules. In this setting, it may 8	
be that the DFT model dominated other decision rules (as also evidenced by the strong 9	
increase in model performance), yielding no evidence for decision rule heterogeneity.  10	

Recent empirical findings in health (Dennis et al., 2020; Buckell et al., 2021) indicated 11	
that decision rule heterogeneous models could improve understanding of decision-making 12	
within the sample, as also previously argued (Smith, 1996; Chorus, 2010, Boeri et al., 2013; 13	
de Bekker-Grob & Chorus, 2013). Part of the results found here corroborate this conclusion. 14	
Of course, some settings may show a wider variety of decision rules than others. The potential 15	
insights derived from a model with multiple decision rules could still warrant its application.  16	

Implications  17	

Predictions and the implied policy recommendations were found to differ based on the 18	
decision rule used. This raises the discussion of which decision rule is best. Several issues 19	
are to be considered. 20	

First, predicted choice shares were relatively robust. Significant differences were found, 21	
but were at times only 0.5 percentage points. This is unlikely to change policy 22	
recommendations. Therefore, it is important to distinguish public health significance from 23	
the statistical significance of differences (see e.g. Hess et al., 2020). These results suggest 24	
that the choice of decision rule has little bearing on predicted choice shares, which accords 25	
with empirical evidence elsewhere (Buckell et al., 2021).  26	

Some outputs, however, differed markedly between decision rules, similar to previous 27	
studies (Dennis et al., 2020; de Bekker-Grob & Chorus, 2013). Then, the use of DFT outputs 28	
may be preferred, as it appeared to better depict behaviour in this dataset. Moreover, using 29	
multiple decision rules is frequently recommended (de Bekker-Grob & Chorus, 2013; Boeri 30	
et al., 2013; Buckell et al., 2021). Model outputs differed from single-rule models when 31	
multiple decision rules were simultaneously used. There is potential for these models to 32	
achieve a better model fit by incorporating behaviour from a large share of decision-makers, 33	
better depict behaviour, and subsequently enhance overall estimates. Hence decision rule 34	
heterogeneous models may then be considered. 35	

Whilst the datasets explored in this work are from SP settings, it is possible that DFT may 36	
also be a valuable tool for RP data analysis. This requires DFT to handle real-world 37	
substitution patterns and unbalanced choice data, while the DFT model applied in this work 38	
lends itself best to SP or experimental settings. Hancock, Hess, Choudhury and Tsoleridis 39	
(2022) demonstrate that a simple extension to DFT models to account for heteroskedasticity, 40	
allows for better predictions of RP travel mode choice behaviour than standard models. 41	



Additionally, Hancock, Hess and Choudhury (2022) demonstrate that DFT models can be 1	
extended to account for longer-term decisions where the attributes of alternatives change 2	
over time, particularly for choice contexts where the choice deliberation process is over a 3	
relatively short period of time. These extensions result in DFT models that are specifically 4	
not just for laboratory settings, and are not dataset-specific, thus may also transfer effectively 5	
to RP health settings. For example, this may allow for the application of DFT models to RP 6	
data collected over a long time-period, e.g. the choice of a smoker to use cigarettes or e-7	
cigarettes over a number of years. 8	

Finally, the setting also has a strong influence (Boeri et al., 2013). To some policy 9	
questions, RUM’s economic welfare framework may be more relevant, which allows for 10	
straightforward derivation of WTP and other policy relevant measures. Alternative 11	
frameworks may be more relevant for emotional decisions (Araña et al., 2008). RRM may 12	
be more suitable under disincentives, which generate anticipated regret (Boeri et al., 2013), 13	
or when decisions are of high significance (Zeelenberg & Pieters, 2007). DFT may be 14	
advisable in situations where there are concerns of potential context effects (similarity, 15	
attraction, and compromise), since DFT can ably handle these (e.g. Roe et al., 2001). We note 16	
that it is possible to run all three approaches on any dataset. This enables the researcher 17	
economic interpretation as well as any further behavioural insights that alternative paradigms 18	
are permissive of.  19	

Limitations 20	
The study had several limitations. First, DFT performance was assessed in only two 21	

datasets and in risky health choices. The importance to risky health behaviours was shown, 22	
but the generalisability of this result to wider health settings is not known. Second, our 23	
decision rule heterogenous models only included classes of constant-only class allocation.  24	
These models can be extended to let sociodemographic variables explain decision rules used 25	
(Hess et al., 2012). This would allow researchers to uncover the characteristics of utility 26	
maximisers, regret minimisers, or DFT-like behaviour. Third, the methods were limited by 27	
the high computational requirements of DFT models. Bootstrapped test-statistics could not 28	
be derived in complex models due to high DFT run-times, hence hypothesis tests were not 29	
always performed. The computational complexity of DFT presents a boundary for wider 30	
application. Fortunately, efficient estimation techniques are a topic of continuing interest 31	
(Bunch, 2014) and the application of DFT models is easier as a result of its introduction to 32	
the Apollo choice modelling package in R (Hess and Palma, 2019). 33	

6 Conclusions 34	

This study compared the performance of DFT, RUM and RRM for explaining choice behaviour 35	
in risky health settings. Overall, the results showed improved performance when using DFT. 36	
Novel latent class DFT models and bootstrapped comparisons of model outputs strengthened 37	
the conclusions. Model outputs differed significantly between RUM, RRM, and DFT, 38	
emphasising the importance of the decision rule used for the analysis of choice behaviour. We 39	
find mixed results for the presence of decision rule heterogeneity. For both datasets, the best-40	
fitting model included a DFT component, demonstrating that it provides avenues towards 41	
improved explanations of choice behaviour for public health research. 42	
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Variable Tobacco data Vaccine data 
Number of participants (N) 2,031 2,147 
Sex:   
     Female 1,101 (54.2%) 810 (37.7%) 
     Male 930 (45.8%) 1,321 (61.5%) 
     Other   16 (0.7%) 
Age (years) 38 (30 - 52) 55 (27-65) 
Age categories:   
     Middle-aged 1,199 (59.0%) 775 (36.1%) 
     Older (>=55) 410 (20.2%) 1,171 (54.5%) 
     Young (<=28) 422 (20.8%) 195 (9.1%) 
     Unknown  6 (0.3%) 
Ethnicity:   
     African-American 182 (9.0%)  
     Asian 50 (2.5%)  
     Other 41 (2.0%)  
     White 1,758 (86.6%) 2,036 (94.8%) 
     Non-white  111 (5.2%) 
Income 47,577 USD (26705 – 75203) 35,000 GBP (15,000 – 62,500) 
Income unknown (N)  244 (11.4%) 
Smoking status:     
     Smoker 1,038 (51.1%)   
     Dual-use 619 (30.5%)   
     E-cigarette user 148 (7.3%)   
     Recent quitter 226 (11.1%)   
Multiple adults in household   1,751 (81.6%) 
Chronic health conditions (total)   1 (0 – 2) 
Note: Unless otherwise specified, continuous variables presented as mean (SD) if approximately normally distributed, median 
(IQR) if non-normally distributed and binary or categorical variables presented as N (% of total sample). Chronic health 
conditions: asthma, high blood pressure, heart disease, kidney disease, overweight. 

 
Table 1: Descriptive characteristics of participants 

	
	 	



	
Attribute Product Levels 
Panel A: Tobacco data   
Flavour Cigarette Plain tobacco, menthol 
  E-cigarette Plain tobacco, menthol, fruit, sweet 
Life years lost by user Cigarette 10 years 
  E-cigarette 2 years, 5 years, 10 years, unknown 
Nicotine level Cigarette Low, medium, high 
  E-cigarette None, low, medium, high 
Price Cigarette $4.99, $7.99, $10.99, $13.99 
  E-cigarette $4.99, $7.99, $10.99, $13.99 
Panel B: Vaccine data   
Risk of infection out of 100,000 
people 

Vaccine(s) 500 (0.5%), 1,500 (1.5%), 3,000 (3%), 
4,000 (4%), 5,000 (5%) 

  No vaccine 7,500 (7.5%) 
Risk of illness out of 100,000 people, 
if infected 

Vaccine(s) 2,000 (2%), 4,000 (4%), 6,000 (6%), 
10,000 (10%), 15,000 (15%) 

  No vaccine 20,000 (20%) 
Protection duration Vaccine(s) 5 years, 2 years, 1 year, 6 months, 

unknown 
  No vaccine - 
Risk of mild side effects out of 
100,000 people 

Vaccine(s) 100 (0.1%), 500 (0.5%), 1,000 (1.0%), 
5,000 (5%), 10,000 (10%) 

  No vaccine - 
Risk of severe side effects out of 
100,000 people 

Vaccine(s) 1 (0.001%), 5 (0.005%), 10 (0.01%), 
15 (0.015%), 20 (0.02%) 

  No vaccine - 
Population coverage Vaccine(s) > 80%, 60%, 40%, 20%, < 10% 
  No vaccine > 80%, 60%, 40%, 20%, < 10% 
International travel restrictions Vaccine(s) No restrictions on international travel 
  No vaccine Restrictions on international travel 
Waiting time Vaccine(s) (free) 2 weeks, 1 month, 2 months, 3 

months, 6 months 
  No vaccine - 
Cost Vaccine(s) (paid) £10, £50, £100, £200, £250, £400 
 No vaccine - 
Note: several levels were not available in cigarettes to reflect real-world choices. Panel A: adapted from Buckell et al. 
(2019), Panel B: adapted from Hess et al. (2022). 

 
Table 2: Attributes and levels used in the tobacco and vaccine DCEs 

  



 

  Tobacco data Vaccine data 
 Decision rule RUM RRM DFT RUM RRM DFT 

Base  Log-likelihood -37,198.58 -37,202.78 -37,165.81 -16,782.28 -16,817.19 -16,588.08 
 AIC 74,423.16 74,431.57 74,359.63 33,598.55 33,660.39 33,204.17 
 BIC 74,528.47 74,536.88 74,473.04 33,695.58 33,757.42 33,308.66 
 Free parameters 13 13 14 13 13 14 

Deterministic 
heterogeneity 

Log-likelihood -35,568.19 -35,574.51 -35,555.41 -16,509.22 -16,543.27 -16,322.68 

 AIC 71,314.38 71,327.02 71,290.82 33,076.45  33,144.54 32,705.36 
 BIC 72,035.38 72,048.03 72,019.92 33,292.68  33,360.77  32,929.04 
 Free parameters 89 89 90 29 29 30 

Latent Class  Log-likelihood -33,240.89 -33,234.17 -33,210.55 -15,308.41 -15,344.00 -15,186.44 
 AIC 66,535.78 66,522.33 66,479.09 30,670.81  30,742.00 30,430.88 
 BIC 66,754.51 66,741.07 66,714.03 30,872.33  30,943.52 30,647.32 
 Free parameters 27 27 29 27 27 29 

 Individuals 2,031 2,147 

 Observations 24,372 12,882 

Note: deterministic heterogeneity includes a priori selected interactions of attributes and socioeconomic 
characteristics. Tobacco data: age, sex, ethnicity, smoking status, and income. Vaccine data: age, age2, sex, income, 
number of adults in household, and number of chronic illnesses. Latent class models consist of two classes of 
preference heterogeneity. 

 

Table 3: Model fit across decision rules: base models, models with preference 
heterogeneity and latent class models. 

  



 

Panel A: Tobacco Data  RUM vs. RRM RUM vs. DFT RRM vs. DFT 

Base models Vuong test statistic 2.226 -3.329 -3.302 
 p-value 0.0260 <0.001 <0.001 
Deterministic heterogeneity Vuong test statistic 1.498 -1.076 -1.4677 
 p-value 0.1341 0.2819 0.1422 
Latent Class (2-class) Vuong test statistic -0.990 -2.450 -1.525 
 p-value 0.3224 0.0143 0.1270 

Panel B: Vaccine data     

Base models Vuong test statistic 9.265 -7.899 -8.650 

 p-value <0.001 <0.001 <0.001 
Deterministic heterogeneity Vuong test statistic 9.057 -6.880   -7.709 
 p-value <0.001 <0.001 <0.001 
Latent Class (2-class) Vuong test statistic 9.473 -5.362 -6.513 
 p-value <0.001 <0.001 <0.001 
Note: for Vuong tests, the first model listed is the reference model. Size of the likelihood-difference and Vuong 
test-statistic may not correspond directly, due to scaling with standard deviation. A value V < 1.96 represents 
statistical evidence in favour of the alternative model, while a value of V > 1.96 represents evidence in favour 
of the reference model 

 
Table 4: Non-nested likelihood-ratio tests for comparison of model fit between decision 

rules, in base models and models with preference heterogeneity. 
  



 Tobacco data Vaccine data 
 RUM RRM DFT RUM RRM DFT 

Base models -37,198.57 -37,202.78 -37,165.81 -16,782.28 -16,817.89 -16,588.08 
Categorical coding -37,167.24 -37,258.89 -37,154.64 -16,485.48 -16,510.91 -16,421.47 
Continuous coding -37,233.43 -37,242.83 -37,187.40 - - - 
Note: tobacco data: continuous coding applies to nicotine, price and life-years lost attribute. Flavour remains 
categorical. Continuous nicotine attribute: none = 0 mg/cigarette, low = 0.1 mg/cigarette, medium = 0.3 mg/cigarette, 
high = 0.6 mg/cigarette, from primary DCE.  Vaccine data: categorical coding: applied to mild side effects, severe side 
effects, protection duration, waiting time, fee and population coverage. Risk of infection and illness remains 
continuous for identification of opt-outs. 

 

Table 5: Model fit (log-likelihood) for alternative treatment of attribute levels, by decision  rule. 
  



 RUM RRM DFT 
Panel A: Tobacco data     Estimate p-value Estimate   p-value Estimate p-value 
Nicotine to price 0.641 (0.360) - 0.653 (0.370) 0.3620 0.463 (0.295) 0.0447 
Life years lost to price -6.701 (0.573) - -7.064 (0.614) <0.001 -5.024 (0.391) <0.001 
Panel B: Vaccine data       
Risk of serious illness to 
price 

 27.401 (1.644) -  27.864 (1.611) 0.0464  41.707 (3.354) <0.001 

Protection duration to 
price 

-4.624 (0.252) - -5.005 (0.270) <0.001 -6.674 (0.754) 0.0015 

Note: Bootstrapped standard errors in parentheses. P-values presented under null hypothesis of similar relative 
importance, compared to RUM. For categorical attributes (tobacco data) ratios are computed using coefficients for 
medium to no nicotine and 2 to 10 life-years lost. 

 
Table 6: Relative importance in base models, with bootstrapped standard errors and p-

values for comparison between frameworks 



 

 RUM RRM DFT 

Panel A: Tobacco data Cigarette E-cigarette Opt-out Cigarette E-cigarette Opt-out Cigarette E-cigarette Opt-out 

Base model 51.1% (0.7751) 35.9% (0.7476) 13.0% (0.4869) 51.1% (0.7759) 35.9% (0.7479) 13.0% (0.4867) 50.9% (0.7722) 36.0% (0.7463) 13.1% (0.4845) 

50% price increase, all products 46.6% (0.7845) 35.4% (0.7315) 18.0% (0.6793) 47.1% (0.7764) 35.8% (0.7322) 17.2% (0.6356) 45.2% (0.7776) 34.1% (0.7123) 20.7% (0.7226) 

     p-values (vs. RUM) - - - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

50% price increase, cigarettes 41.0% (0.8084) 43.2% (0.8041) 15.8% (0.5892) 41.1% (0.8041) 43.5% (0.8074) 15.4% (0.5745) 41.7% (0.7472) 41.5% (0.7714) 16.9% (0.5831) 

     p-values (vs. RUM) - - - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Panel B: Vaccine data Vaccine (free) Vaccine (paid) Opt-out Vaccine (free) Vaccine (paid) Opt-out Vaccine (free) Vaccine (paid) Opt-out 

Base model 63.4% (0.6967) 29.8% (0.7267) 6.8% (0.3497) 63.4% (0.6962) 29.8% (0.7265) 6.8% (0.3497)  63.3% (0.7014) 29.8% (0.7193) 6.9% (0.3457) 

50% price increase 68.1% (0.6364) 24.6% (0.6264) 7.3% (0.3662)  68.1% (0.6342) 24.6% (0.6249) 7.3% (0.3663) 66.7% (0.6326) 26.2% (0.6315) 7.1% (0.3500) 

      p-values (vs. RUM) - - - 0.5262 0.4814 <0.001 <0.001 <0.001 <0.001 

50% increase in protection duration 64.3% (0.6956) 29.8% (0.7236) 6.0% (0.3015) 64.3% (0.6950) 29.8% (0.7235) 5.9% (0.3004) 63.7% (0.7029) 30.1% (0.7190) 6.3% (0.3172) 

     p-values (vs. RUM) - - - 0.0022 0.9553 <0.001 <0.001 <0.001 <0.001 

Note: Bootstrapped SEs in parentheses (200 draws), bootstrapped p-values presented for comparison (test for mean difference) between RRM/DFT and RUM predicted choice shares. 

Table 7: Predicted choice shares under policy scenarios in base models, by decision rule, with p-values for comparison between decision rules.  



 
  RUM RRM DFT 
Panel A: Tobacco data  Cigarette E-cigarette Opt-out Cigarette E-cigarette Opt-out Cigarette E-cigarette Opt-out 
Nicotine: high to low Cigarette -0.0072 (0.0061) 0.0076 (0.0065) 0.0077 (0.0066) -0.0168 (0.0122) 0.0176 (0.0131) 0.0180 (0.0134) -0.0044 (0.0119) 0.0049 (0.0133) 0.0038 (0.0104) 
  - - - p=0.1203 p=0.1310 p=0.1315 p=0.6456 p=0.6990 p=0.3527 
 E-cigarette 0.0055 (0.0047) -0.0098 (0.0082) 0.0058 (0.0049) 0.0125 (0.0083) -0.0219 (0.0144) 0.0129 (0.0086) 0.0068 (0.0086) -0.0110 (0.0139) 0.0040 (0.0054) 
  - - - p=0.111 p=0.1145 p=0.1142 p=0.7846 p=0.0046 p=0.4527 
Life years lost: 10 to 2 years E-cigarette -0.2011 (0.0138) 0.5239 (0.0507) -0.2064 (0.1040) -0.1932 (0.0142) 0.5497 (0.0511) -0.1957 (0.0144) -0.2092 (0.0129) 0.5514 (0.0440) -0.1322 (0.0102) 
  - - - p<0.001 p<0.001 p<0.001 p=0.0278 p=0.1064 p <0.001 
Flavour: tobacco to menthol Cigarette -0.1751 (0.0156) 0.2232 (0.0242) 0.2298 (0.0249) -0.1828 (0.0160) 0.2295 (0.0250) 0.2613 (0.0288) -0.1768 (0.0153) 0.2298 (0.0244) 0.2162 (0.0237) 
  - - - p<0.001 p<0.001 p<0.001 p=0.1025 p=0.0038 p=0.0090 
 E-cigarette 0.0646 (0.0192) -0.1056 (0.0297) 0.0668 (0.0199) 0.0576 (0.0171) -0.1014 (0.0287) 0.0814 (0.0247) 0.0596 (0.0185) -0.0958 (0.0283) 0.0607 (0.0190) 
  - - - p=0.0023 p=0.0172 p=0.0026 p<0.001 p <0.001 p=0.0048 
Price: 5 to 8 USD Cigarette -0.1158 (0.0038) 0.1739 (0.0073) 0.1843 (0.0075) -0.1124 (0.0036) 0.1781 (0.0071) 0.1644 (0.0062) -0.1413 (0.0065) 0.1646 (0.0079) 0.4498 (0.0382) 
  - - - p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 
 E-cigarette 0.1167 (0.0047) -0.1634 (0.0052) 0.1204 (0.0050) 0.1177 (0.0048) -0.1588 (0.0049) 0.1002 (0.0039) 0.1069 (0.0047) -0.1914 (0.0077)  0.2610 (0.0190) 
  - - - p<0.001 p<0.001 p<0.001 p<0.001 p <0.001 p <0.001 
Panel B: Vaccine data  Vaccine (average A & B) Vaccine (average A & B) Vaccine (average A & B) 
Risk of severe side effects   -0.1066 (0.0092)   -0.1153 (0.0095)   -0.1081 (0.0079)  
   -   p<0.001   p=0.7364  
Risk of serious illness   -0.2099 (0.0081)   -0.2015 (0.0077)   -0.2176 (0.0085)  
   -   p<0.001   p=0.2354  
Price   -0.0888 (0.0033)   -0.0950 (0.0036)   -0.0604 (0.0093)  
   -   p<0.001   p=0.0012  
Note: Bootstrapped SEs in parentheses (200 draws), bootstrapped p-values presented for comparison (test for mean difference) of elasticities between RRM/DFT and RUM. Panel A: Pseudo-elasticities for increase in categorical attributes. Panel 
B: Direct elasticities, averaged over vaccine A and B (multiplied by 100 to represent percentage increase). 

Table 8: Elasticities in base models, by decision rule, with p-values for comparison between decision rules. 

 



 

Panel A: Tobacco data Log-likelihood Log-likelihood difference Vuong (p-value) 
2-class RUM -33,240.89 - - 
2-class RRM -33,234.17 - - 
2-class DFT -33,210.55 - - 
RUM-RRM -33,229.10 +5.06 (vs 2-class RRM) -3.641 (<0.001) 
RUM-DFT -33,199.36 +11.19 (vs 2-class DFT) -1.607 (0.1081) 
RRM-DFT -33,188.02 +22.53 (vs 2-class DFT) -2.497 (0.0125) 

Panel B: Vaccine data    
2-class RUM -15,308.41 - - 
2-class RRM -15,344.00 - - 
2-class DFT -15,186.44 - - 
RUM-RRM -15,329.50 -21.09 (vs. 2-class RUM) -6.469 (<0.001) 
RUM-DFT -15,226.90 -40.46 (vs. 2-class DFT) -2.486 (0.0129) 
RRM-DFT -15,245.92 -59.48 (vs. 2-class DFT) -3.409 (<0.001) 

Note: decision rule heterogeneous models are compared to the best performing latent-class counterpart 
with a single decision-making rule. Size of the likelihood-difference and Vuong test-statistic may not 
correspond directly, due to scaling with standard deviation. 
 

Table 9: Model fit of single-rule latent class models and decision rule heterogeneous models, 
with non-nested likelihood ratio tests for presence of decision rule heterogeneity. 

  



 

Panel A: Tobacco data 2-class RUM 2-class DFT 2-class RUM-DFT  
Nicotine to price 0.871 (0.470) 0.715 (0.371) 0.946 (0.934)  
Life years lost to price -6.110 (0.682) -4.521 (0.429) -5.330 (1.162)  

Panel B: Vaccine data     
Risk of serious illness to price 11.806 (0.922) 16.090 (1.296) 18.081 (1.342)  
Protection duration to price -2.101 (0.139) -2.510 (0.279) -2.862 (0.263)  

Note: Standard errors (delta-method) in parentheses. In tobacco data, for categorical attributes, relative importance of a 
change in categorical attribute levels is used. Nicotine attribute: medium to no nicotine, health attribute: 2 to 10 life-years 
lost, flavour: sweet vs. tobacco 

 

Table 10: Relative importance in latent class, decision-rule heterogeneous models 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Appendix 

A Specification of categorical attributes in DFT models, tobacco data 

A categorical attribute with l levels may be included using dummy coding, creating l −1 
additional covariates, analogous to RUM. In DFT, this results in l−1 additional attributes, 
attended to randomly following the stochastic process induced by weights vector W. 

Alternatively, the l−1 dummy variables may be multiplied by their scaling parameters 
before inclusion in β. This creates only one categorical attribute, of which the scaling 
parameter takes a value dependent on the attribute level. To illustrate, consider the “life years 
lost” attribute (levels: 2, 5, 10 and unknown) of the tobacco DCE. Implementation of the 
alternative structure modifies (9), such that: 

βE')@.E = β1B?F ⋅ 𝑥1B?F,- + βGB?F ⋅ 𝑥GB?F,- + β5HB?F ⋅ 𝑥5HB?F,- + βI#3#%J# ⋅ 𝑥I#3#%J#,- 		(24)	
𝑀-,E')@.E = 1		∀		𝑗 ≠ 𝑗%K.;%I.																																																																																																							(25)		

𝑉L = 𝐶 ⋅ 𝑀 ⋅ 𝐵 ⋅ 𝑊L + εL		with		β, including		βE')@.E	(scalar), 𝑜𝑛	𝑡ℎ𝑒	𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙	𝑜𝑓	𝐵		(26) 

 

The latter specification may conceptually be closer to the DFT behavioural paradigm. A 
decision-maker is more likely to attend to all attribute levels at a single updating step, rather 
than separately comparing performance of one attribute level at each step, for example. 

 

B Derivation of model outputs in latent class and decision rule heterogeneous models 

In latent class models, estimates of relative importance were derived as before, but relative 
importance was now weighted at class membership probabilities (see also Erdem et al., 2014) 
given by: 

𝑅𝐼3,@ =�π$

M

$45

β$,3
β$,@

																																																											(27) 

where βc,k,βc,k represents the coefficients in class c for attributes k and l, and πc represents the 
class probabilities. Note that in decision rule heterogeneous models each latent class c 
additionally uses a different decision rule. Delta-method SEs additionally incorporated 
uncertainty in πc. 

Pseudo-elasticities were simulation-based, using predicted choice probabilities. Choice 
probabilities were obtained in line with the latent class specification, weighted such 
that:	𝑝!-. = ∑ π$ ⋅ 𝑝NOP(β$)$ . Further derivations were similar to those presented in the 
methods. 

  



C Parameters 

C.1.  Base model parameters 

[Insert	Table	C.1.A	here]	

[Insert	Table	C.1.B	here]	

 
C.2.  Parameters in DFT model with deterministic interactions 

For brevity, parameters of models with deterministic heterogeneity were presented for DFT 
only. For the tobacco dataset, all interactions were highly significant from (joint) Wald tests, 
except the interaction of nicotine and gender. 

Directions of interactions were as expected from theory. Briefly, from Table C.2.A, 
compared to tobacco, sweet and fruit flavours were preferred by younger adults, e-
cigarette/dual users, and recent quitters. Compared to the white ethnic group, the black ethnic 
group more strongly preferred menthol flavours. Recent quitters also appeared to prefer lower 
nicotine levels, compared to high nicotine levels. Preferences for a lower price were stronger 
among those with a lower income. For the vaccine dataset (Table C.2.B), significant 
interactions occur between age and vaccine uptake (constants), as well as age and risk of 
serious illness. On average, vaccine uptake did not appear to differ between men and women, 
but weak interactions were observed between sex and risk of infection, risk of illness, and 
serious side effects. There was a strongly significant interaction between fee and household 
income. 

 

[Insert Table C.2.A here] 

[Insert Table C.2.B here] 



D   Relative importance measures under DFT models 

Given that DFT is based on psychological rather than econometrics modelling assumptions, 
it is unsurprising that it does not offer standard econometric model outputs such as 
willingness-to-pay. Whilst it must be emphasised that there is no explicit economic 
interpretation of DFT outputs, there are similarities in the mathematical constructs and model 
properties that enable comparison of how attribute changes relate to choice probabilities.   

In DFT, the scaling parameter 𝛽 reflects the importance a decision-maker places on a 
specific attribute. Once selected for consideration, this value “scales” the added preference. 
The ratio of these parameters does not reflect the marginal rate of substitution in DFT; for a 
specific choice to be made, the increase in the attribute value of alternative j is not directly 
offset by a decrease/increase in another attribute value.  

In particular, this occurs because in a DFT model, preference values for alternative j 
depend not only on attributes xij, but also on the other attribute values xim of unchosen 
alternatives (as is the case for RRM models). The matrix multiplication required for 
preference updating, which includes a distance function D used in the feedback matrix (S), 
then results in a choice set dependency. Trade-offs between attributes depend on the context 
of a choice (the other alternatives available). Moreover, random attribute attendance 
introduces further covariance between alternatives. Consequently, the probability for a set of 
chosen alternatives under a DFT model for an individual decision maker may not all be held 
constant with the same changes in attribute values. At the individual level, the MRS can 
therefore only be interpreted conditional on the choices made by the consumer. This context 
dependency prevents derivation of a MRS that holds for all changes in attribute values. 
Hence, welfare measures and economic model outputs such as WTP cannot be derived for 
consumers. The representative consumer approach (Herriges & Kling, 1999), as applied to 
RRM (Dekker, 2014), may be a possible solution to this problem. This has not yet been 
studied for DFT models.  

We use parameter ratios as a measure of “relative importance”, but not as a MRS. As 
outlined above, the reason these parameters cannot be treated as MRS is that these curves 
are dependent on the choice task at hand. This, however, is also the case for RRM13, hence 
most applications of RRM models compare similar parameter ratios between decision rules 
(e.g. de Bekker-Grob & Chorus, 2013; Boeri et al., 2013). Consequently, if a modeller is 

	

13 Dekker (2014) derives a MRS using the representative consumer approach in RRM-context.  



willing to use RRM models, then they might also consider DFT models, which, on these 
data, provided a better account of behaviour. 

A trade-off still underpins the estimators of “relative importance”. This is because they 
have, on an average trial where each attribute is considered the same number of times, a 
similar impact on choice probabilities (for a specific alternative, keeping other attributes 
constant) as beta coefficients in a RUM model. Specifically, if we consider the expectation 
of the valence vector (key in calculating probabilities under DFT, see Equations 5-15), we 
have:  

𝐸[𝑉𝜏]	=	𝜇	=	𝐶·𝑀·B·𝑊		 	 	 	 (31)	

which, on its own, does have the property of allowing marginal rates of substitution. C 
and W are constant in our specification, M is based purely on the attribute values, and B is 
the set of beta coefficients arranged on the diagonal of a matrix. Thus, an analyst could 
estimate the change required in one attribute given the change in another to keep 𝜇 constant, 
and this would hold across all choice tasks that are being modelled.  

A DFT model as a whole does not conserve this property, as the probabilities of 
alternatives also depend on the variance generated from random attribute attendance. The 
non-linearity of the model (from this random attribute attendance and feedback matrix S) 
means that these measures of relative importance do not translate to “average” marginal rates 
of substitution.  

Hence, a change in one attribute could offset a change of another within an average choice 
task (trial), but the random attribute attendance means that under a DFT model, the total 
preference at the end of deliberation is not always the same. Moreover, choice-set 
dependency results in the trade-offs holding the chosen alternative constant being dependent 
on the other choice alternatives present, further preventing translation to “average” MRS 
estimates. Consequently, the structure of the covariance matrix means that small changes to 
the attributes, which could result in the same expected preference values, may not quite have 
the same overall probability of choosing each alternative. We therefore only interpret the 
relative importance estimates as a trade-off over expected valence, but not probabilities.  

Further, DFT decision rules model sequential attribute attendance, but the trade-offs 
required for interpretation of relative importance remain valid. The weighting matrix governs 
the probability of attribute attendance at each time step, and therefore the sequence of 
attribute attendance. We interpret relative importance over average attribute attendance. The 
weights in our specification were set equally for each attribute, but need not have been as it 
is possible to estimate them. In this case, an attribute with a higher probability is more likely 



to be attended to, and thus more likely to be considered first, but relative importance could 
still be derived over average attendance.  

To further explain these measures, an adapted choice scenario from each dataset is 
explored in detail.  

In the plots in Figure D.1, the probability of choosing to pay for Vaccine A is generated 
under different models (using their estimated parameters from Table C.1.B). The cost of 
Vaccine A (£Y in Table D.1) varies between £0 and £500, and the risk of infection (X%) 
varies between 0 and 5%. 

[Insert Table D.1 here] 

We compare four models. The first three are our base DFT, RUM and RRM models from 
Table 3. The fourth is the RUM model but with cost included in the utility specification as: 

log(𝑥$%F.) ⋅ 𝛽@;$%F.     (28) 

where the logarithm of cost is used. In Figure D.1, the probability of paying for Vaccine A is 
shown by the shaded graphs, with red representing a probability of one, and purple a 
probability of zero.  Regardless of the underlying model structure, the increase/decrease in 
attribute levels results in changes to the probability of the chosen alternative. 

Under the RUM model, in Panel B, the expected indifference curves are observed 
(straight lines), representing the change in risk of illness (illness) required to offset an 
increase in price. As the RUM specification includes: 

𝑉!-. = 𝑥K?!$' ⋅ 𝛽K?!$' + 𝑥!@@#'FF ⋅ 𝛽!@@#'FF +⋯   (29) 

The willingness to pay for a change in risk of illness is: 

*+
*,!--&.//

*+
*,01!).

= Q!--&.//
Q01!).

     (30) 

These are typical WTP measures, but are also mathematically identical to relative importance 
(parameter ratios) in this RUM model. The corresponding gradient is shown in Panel B, and 
directly translates to the risk of illness to price given in Table 6B, which is 27.401. This 
indicates that, for example, changing from 0% risk of illness (y=0 in the graphs) to 5% risk of 
illness is offset by a reduction in price of 5 * 27.40, totalling 137.01. 

Under the DFT model, in Panel A, curved lines are observed, that are both slightly 
convex and concave, demonstrating that the change in one attribute required to offset a 
change in another attribute is dependent on the attribute levels, and is not constant. However, 
the same observation can be made for the RRM model, Panel C, which produces slightly 
convex curves, and for the additional, log-cost RUM model, Panel D, which also gives 
concave curves. This specification of RUM models, with the logarithm of cost, is also used in 
health economics (e.g. Johnson, Mohamed, Özdemir, Marshall & Phillips, 2011), where 
typically a representative cost is used to generate WTP measures (that could also be referred 



to as relative importance). Under DFT, a possible approach would be to similarly use a 
representative cost (together with representative values for other attributes) to generate 
comparable measures.  

Relative importance is therefore only a locally valid approximation. It reflects the change 
in weight for the average consumer, but this does not hold for all consumers, nor does it hold 
for a specific attribute value or choice scenario. This context dependency prevents derivation 
of a MRS that holds for all changes in attribute values. 	

[Insert Figure D.1 here] 

Figure D.1: Probabilities of choosing to pay for Vaccine A given different attribute levels 
under different choice models. 

We also include an example for the cigarette dataset, which allows for the demonstration 
of probability plots where there are attributes that are dummy coded. In the plots in Figure 
D.2, the probability of choosing “Cig1” is generated under different models (using their 
estimated parameters from Table C.1.A). The cost of Cig1 ($X) varies between $5 and $15, 
and the number of life years lost (Y) varies between 0 and 10 years. 

[Insert Table D.2 here] 

We compare the same four models: DFT, RUM, RRM and RUM with a logarithmic 
transform of cost. In Figure D.2, the probability of the first alternative (Cig1) is shown.  
Horizontal lines represent the categorical attributes levels and their respective utility, regret, 
or preference, for RUM, RRM, and DFT, respectively. Again, regardless of the underlying 
model structure, the increase/decrease in attribute levels results in changes to the probability 
of the chosen alternative. 

Under RUM, the gradient in Panel B directly translates to the life years lost to price given 
in Table 6A, which is -$6.701. This indicates that changing from 2 years lost (represented by 
a horizontal orange line) to 10 years lost (y=0 in the graphs) is offset by a reduction in price 
of $6.701. 

Under the DFT model, in Panel A, curved lines that are slightly concave are again 
observed, demonstrating that the change in one attribute required to offset a change in 
another attribute is dependent on the attribute levels, as was the case for the vaccination 
choice example. This time, the log-cost RUM model, Panel D, gives concave curves that look 
remarkably similar to the DFT model. 

[Insert Figure D.2 here] 

Figure D.2: Probabilities of choosing ‘Cig1’ given different attribute levels under different 
choice models. 
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 RUM RRM DFT 
 Estimate (t-statistic) Wald test (attribute) Estimate (t-statistic) Wald test (attribute) Estimate (t-statistic) Wald test (attribute) 
Product-flavour constants  455.30 (5 dof, p<0.001)  447.29 (5 dof, p<0.001)  384.67 (5 dof, p<0.001) 
     Cigarette Menthol -0.4044 (-10.04)  -0.1781 (-10.10)  -0.4071 (-9.96)  
     Cigarette Tobacco 0 (reference)  0 (reference)  0 (reference)  
     E-cigarette: Sweet -1.0581 (-18.28)  -0.4438 (-18.59)  -1.0599 (-17.96)  
     E-cigarette: Fruit -1.1224 (-19.95)  -0.4708 (-20.15)  -1.1449 (-18.56)  
     E-cigarette: Menthol -1.1542 (-16.91)  -0.4816 (-17.41)  -1.1351 (-16.96)  
     E-cigarette: Tobacco -0.9749 (-19.07)  -0.4128 (-19.14)  -0.9747 (-17.00)  
     Opt-out -1.7881 (-30.80)  -0.6900 (-31.54)  -2.1705 (-25.93)  
Nicotine  4.10 (3 dof, p=0.2512)  4.40 (3 dof, p=0.2216)  0.44 (3 dof, p=0.9314) 
     No nicotine -0.0629 (-1.87)  -0.0247 (-1.86)  -0.0742 (-0.34)  
     Low nicotine -0.0325 (-1.30)  -0.0143 (-1.43)  -0.0376 (-0.56)  
     Medium nicotine 0 (reference)  0 (reference)  0 (reference)  
     High nicotine -0.0019 (-0.10)  -0.0002 (-0.02)  -0.0250 (-0.30)  
Price (USD) -0.0981 (-30.17) 910.06 (1 dof, p<0.001) -0.0379 (31.04) 963.57 (1 dof, p<0.001) -0.1603 (-14.25) 203.10 (1 dof, p<0.001) 
Health: years of life lost  201.21 (3 dof, p<0.001)  189.68 (3 dof, p<0.001)  188.36 (3 dof, p<0.001) 
     Unknown years of life lost 0.4591 (9.55)  0.1830 (9.33)  0.5914 (8.42)  
     2 years of life lost 0.6573 (12.71)  0.2677 (12.38)  0.8055 (10.53)  
     5 years of life lost 0.1612 (3.67)  0.0599 (3.46)  0.2793 (3.03)  
     10 years of life lost 0 (reference)  0 (reference)  0 (reference)  
DFT specific parameters     Estimate (t-statistic)  
     Standard deviation     1 (fixed)  
     Preference updating steps     1.7231 (6.17, vs. 1)  
     f1     0 (fixed)  
     f2     0 (fixed)  
Number of individuals 2,031 2,031 2,031 
Number of observations 24,372 24,372 24,372 
Estimated parameters 13 13 14 
Log-likelihood -37,198.58 -37,202,78 -37,165.81 
AIC 74,423.16 74,431.57 74,359.63 
BIC 74,528.47 74,536.88 74,473.04 
Note: DFT parameter for preference updating steps was restricted to T > 1. Subsequent SEs derived using the delta-method, with t-test performed against T=1.   

Table C.1.A: Parameter estimates for base RUM, RRM, and DFT models, tobacco data. 

 



 

 RUM RRM DFT 
 Estimate (t-statistic) Wald test (attribute) Estimate (t-statistic) Wald test (attribute) Estimate (t-statistic) Wald test (attribute) 
Constants  253.17 (2 dof, p<0.001)  876.86 (2 dof, p<0.001)  182.76 (2 dof, p<0.001) 
     Free vaccine 0.2155 (1.65)  1.3248 (28.44)  5.5452 (7.02)  
     Paid vaccine -0.3707 (-2.83)  1.0606 (23.72)  4.2461 (5.86)  
     No vaccine 0 (reference)  0 (reference)  0 (reference)  
Position (left vs. right) 0.0364 (3.13) 9.81 (1 dof, p=0.0017) 0.0180 (3.33) 11.10 (1 dof, p<0.001) 0.1312 (0.42) 0.17 (1 dof, p=0.6774) 
Risk of infection -0.1417 (-11.87) 140.86 (1 dof, p<0.001) -0.0609 (-12.47) 155.60 (1 dof, p<0.001) -0.9795 (-4.61) 21.29 (1 dof, p<0.001) 
Risk of illness -0.1310 (-23.89) 570.73 (1 dof, p<0.001) -0.0548 (-23.79) 565.94 (1 dof, p<0.001) -0.7080 (-2.93) 8.58 (1 dof, p=0.0034) 
Risk of mild side-effects -0.0424 (-9.04) 81.73 (1 dof, p<0.001) -0.0181 (-9.42) 88.74 (1 dof, p<0.001) -0.3856 (-5.57) 31.01 (1 dof, p<0.001) 
Risk of severe side-effects -30.3855 (-11.31) 128.00 (1 dof, p<0.001) -11.823 (-10.79) 116.47 (1 dof, p<0.001) -140.4708 (-13.39) 179.17 (1 dof, p<0.001) 
Protection duration unknown -0.1914 (-3.69) 13.63 (1 dof, p<0.001) -0.0742 (-3.49) 12.21 (1 dof, p<0.001) -2.4166 (-2.35) 5.52 (1 dof, p=0.0188) 
Protection (months) 0.0219 (25.38) 644.33 (1 dof, p<0.001) 0.0092 (24.79) 614.74 (1 dof, p<0.001) 0.1121 (3.07) 9.41 (1 dof, p=0.0022) 
Waiting time (months) -0.0484 (-19.50) 380.11 (1 dof, p<0.001) -0.0181 (-20.36) 414.33 (1 dof, p<0.001) -0.2523 (-10.04) 100.75 (1 dof, p<0.001) 
Fee (GBP) 0.0048 (-26.30) 694.81 (1 dof, p<0.001) -0.0018 (-27.42) 752.00 (1 dof, p<0.001) -0.0170 (-14.57) 212.32 (1 dof, p<0.001) 
Population coverage (%) 0.0022 (0.84) 0.71 (1 dof, p=0.3982) 0.0011 (1.10) 1.20 (1 dof, p=0.2733) 0.2589 (2.49) 6.19 (1 dof, p=0.1288) 
Exempt from travel restrictions -0.7183 (-4.43) 19.63 (1 dof, p<0.001) -0.2892 (-4.14) 17.17 (1 dof, p<0.001) 3.5468 (1.08) 1.16 (1 dof, p=0.2817) 
DFT specific parameters     Estimate (t-statistic)  
     Standard deviation     1 (fixed)  
     Preference updating steps     3.1972 (15.46, vs. 1)  
     f1     0 (fixed)  
     f2     0 (fixed)  
Number of individuals 2,147 2,147 2,147 
Number of observations 12,882 12,882 12,882 
Estimated parameters 13 13 14 
Log-likelihood -16,786.28 -16,769.27 -16,588.08 
AIC 33,598.55 33,564.54 33,204.17 
BIC 33,695.58 33,661.56 33,308.66 
Note: Risk represents risk of event out of 100,000 people. DFT parameter for preference-updating steps was restricted to T > 1. Subsequent SEs derived using the delta-method, with t-test performed against T=1. Wald test statistics 
and t-test statistics may not correspond directly due to rounding. 

Table C.1.B: Parameter estimates for base RUM, RRM, and DFT models, vaccine data. 

 

 



 Interaction Menthol cig Sweet ecig. Fruit ecig. Menthol ecig. Tobacco ecig. Opt-out 
Constant  -0.7320 (0.1241) -2.0957 (0.2197) -2.2443 (0.2338) -2.0957 (0.2349) -1.8531 (0.1991) -2.7426 (0.2228) 
 Age (young) 0.2035 (0.1254) 0.2283 (0.1530) 0.3720 (0.1581) 0.1325 (0.1833) -0.0298 (0.1631) -0.5698 (0.1804) 
 Age (old) -0.2660 (0.1473) -0.3775 (0.1668) -0.4425 (0.1782) 0.0901 (0.1842) 0.0884 (0.1302) 0.5561 (0.1620) 
 Sex (female) -0.0907 (0.1019) -0.3355 (0.1230) -0.1772 (0.1234) -0.3547 (0.1455) -0.1159 (0.1075) -0.3594 (0.1346) 
 Ethnicity (black) 0.9357 (0.1661) 0.7051 (0.2137) 0.6044 (0.2181) 0.9672 (0.2342) 0.3793 (0.1852) 0.2977 (0.2441) 
 Ethnicity (Asian) 0.3936 (0.3154) 0.6172 (0.3622) 0.7337 (0.3982) 0.5912 (0.4152) 0.5770 (0.3408) 0.1808 (0.4156) 
 Ethnicity (other) 0.3347 (0.3884) 0.1178 (0.4296) 0.2627 (0.4230) 0.1961 (0.5110) -0.2591 (0.3937) -0.7183 (0.5123) 
 Smoking (e-cig) 1.1528 (0.2230) 3.6675 (0.4336) 3.5593 (0.4221) 3.3290 (0.4105) 2.9330 (0.3842) 2.0507 (0.3360) 
 Smoking (dual) 0.3330 (0.1142) 1.3166 (0.1862) 1.2992 (0.1827) 1.0100 (0.1949) 0.9488 (0.1586) -0.1209 (0.1531) 
 Smoking (quitter) 0.2486 (0.2012) 1.5038 (0.2704) 1.3757 (0.2693) 1.3132 (0.2909) 1.2681 (0.2293) 1.6642 (0.2570) 
  None Low Medium High   
Nicotine  -0.0358 (0.0584) -0.0308 (0.0481) 0 (-) -0.0430 (0.0337)   
 Female -0.1014 (0.0723) -0.0839 (0.0561) 0 (-) 0.0430 (0.0392)   
 Smoking (e-cig) -0.0308 (0.1579) 0.1133 (0.1102) 0 (-) -0.0901 (0.0792)   
 Smoking (dual) -0.0230 (0.0581) 0.0768 (0.0584) 0 (-) 0.0384 (0.0469)   
 Smoking (quitter) 0.3141 (0.1051) 0.1241 (0.0868) 0 (-) -0.0699 (0.0727)   
  Unknown 2 years 5 years 10 years   
Years life lost  0.5293 (0.0787) 0.7587 (0.0994) 0.3678 (0.0772) 0 (-)   
 Smoking (e-cig) 0.2250 (0.2088) -0.1466 (0.2097) -0.1392 (0.1880) 0 (-)   
 Smoking (dual) -0.0971 (0.0961) -0.2081 (0.1061) -0.3150 (0.1044) 0 (-)   
 Smoking (quitter) -0.2499 (0.1266) -0.1589 (0.1452) -0.3139 (0.1372) 0 (-)   
Price  -0.1154 (0.0149)      
 Income -0.2131 (0.0507)      
Preference-updating steps  2.8321 (0.1172)      
Note: Robust SEs in parentheses. f fixed to 0. Reference category ASC: tobacco cigarettes (omitted). DFT parameter for preference-updating steps was restricted to T > 1. Subsequent SEs derived using the delta-method, 
with t-test performed against T=1. 

Table C.2.A: Parameters in DFT model with deterministic heterogeneity, tobacco data. 

 

 



Variable Interaction    
   Vaccine (free) Vaccine (paid) 
Constant   14.0288 (1.6233) 13.8944 (1.5874) 
 Age  -0.5308 (0.0553) -0.5807 (0.0531) 
 Age2  0.0058 (0.00057) 0.0063 (0.00054) 
 Sex (male)  0.9088 (0.7570) 0.9088 (0.7570) 
 Multiple adults in household  1.0134 (0.7155) 0.8555 (0.7666) 
Position (left vs. right)  0.1082 (0.0377)   
Risk of infection  -0.7229 (0.1177)   
 Sex (male) -0.1675 (0.0702)   
Risk of illness  -0.7125 (0.0972)   
 Age (years) 0.0124 (0.0013)   
 Age2 0.00018 (0.000018)   
 Sex (male) 0.0753 (0.0682)   
 Chronic illness (#) 0.0057 (0.0030)   
Risk of mild side effects  -0.3065 (0.0577)   
Risk of severe side effects  -121.5572 (24.7410)   
 Sex (male) 35.5189 (18.8642)   
Protection (unknown)  -1.8381 (0.5115)   
Protection (months)  0.0680 (0.0129)   
 Chronic illness (#) 0.0135 (0.0057)   
Waiting time (months)  -0.1913 (0.0299)   
Fee (GBP)  -0.0167 (0.0017)   
 Household income (per 1,000) -0.5389 (0.0932)   
 Household income (unknown) 1.1454 (0.3548)   
Population coverage (%)  0.2215 (0.0288)   
Exempt from travel restrictions  1.6396 (0.9417)   
Preference-updating steps  3.9554 (0.4106)   
Note: Number of individuals: 2,131. Number of observations: 12,786. Robust SEs in parentheses. f fixed to 0. Reference category ASC: no vaccine (omitted). Unknown age 
imputed with median age. Sex (dummy-coded): male vs. female, omitting other gender category. 

Table C.2.B: Parameters in DFT model with deterministic heterogeneity, vaccine data. 



  Vaccine A Vaccine B No vaccine 
  free paid free paid   
Risk of infection X% 4% 7.5% 
Risk of serious illness 4% 2% 20% 
Est. protection duration 2 years 5 years   
Risk of mild side effects 5% 0.1%   
Risk of severe side effects 0.001% 0.001%   
Population coverage 40% 40%   
Travel restrictions None None  Restrictions 
Waiting time  6 months  6 months    
Fee  £Y  £400   

Table D.1: An adjusted example choice task from the vaccine dataset. 

  



	 Cig1 Cig2 Ecig1 Ecig2 Optout 
Cost $X $11 $5 $5 $0 

Nicotine High High High Medium - 
Years Lost Y 10 5 10 - 

Flavour Tobacco Menthol Sweet Tobacco - 

Table D.2: An adjusted example choice task from the smoking dataset. 

 



 

Figure D.1: Probabilities of choosing to pay for Vaccine A given different attribute levels 
under different choice models. 

 



 

Figure D.2: Probabilities of choosing ‘Cig1’ given different attribute levels under different 
choice models.	


