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Abstract 5 
Advanced econometric models used in the field of transport or marketing are becoming increasingly 6 
sophisticated and able to capture complex decision making and outcomes. In this paper, we apply state-7 
of-the-art discrete-continuous choice models to the field of Ecology, in particular to model activity 8 
engagement of the population of Swedish Brown bears. Using data from GPS collars that track wild animals 9 
over time, we estimate a Multiple Discrete-Continuous Extreme Value (MDCEV) model to understand 10 
activity engagement and duration as a function of both bear characteristics and other external factors. We 11 
show that the methodology is not only suitable to address this aim, but also allows us to produce insights 12 
into the connection between the animal’s age and gender and activity engagement as well as the links 13 
with climate variables (temperature and precipitation) and human activity (hunting).  14 
 15 
1. Introduction 16 
The understanding of the patterns of movement of living organisms is a prominent area of study in animal 17 
biology and ecology. Indeed, the presence and distribution of different animals in space and time are a 18 
product of the underlying process of animal movement (Turchin 1998; Nathan et al. 2008; Kays et al. 2015). 19 
Identifying behavioural states along an animal’s movement path is straightforward when visual 20 
observation is possible (Bates and Byrne 2009; Hayward et al. 2009). Direct observation is an effective 21 
method for investigating animal behaviour and the least prone to errors when it comes to identifying the 22 
specific behavioural state (Loettker et al. 2009; Shamoun-Baranes et al. 2012). However, in most cases it 23 
is challenging if not impossible to constantly observe animals as they go through their lives in their natural 24 
habitat. Wild animals are often elusive and can reside in remote areas with challenging terrain. Many 25 
species minimize exposure to perceived threats, which often include human encroachments. Due to the 26 
difficulties in locating and observing animals, early studies have been marred by small sample sizes, often 27 
resulting in insufficient data for statistical inference (Caro 2007). In addition, investigating wild animal 28 
behaviour via direct observation may pose threats to researcher safety.  29 
 30 
The development and diffusion of animal telemetry devices has revolutionized the ability to study animal 31 
movements and behaviour in the wild (Cagnacci et al. 2010; Kays et al. 2015), helping to overcome many 32 
of the practical, logistical, and financial challenges of direct field observation. Recent advances in GPS 33 
radiocollar technologies allow tracking of animals for long sampling periods, providing large data sets of 34 
locations at flexible time intervals (Cagnacci et al. 2010). Telemetry data have created possibilities that 35 
allow to address some of the most fundamental ecological hypotheses about space use, movement, 36 
resource selection and behaviour. The GPS locations can be used to investigate, among others, habitat 37 
selection (Signer et al. 2019), spatiotemporal movements (Nathan et al. 2008) and habitat influences on 38 
animal movement (Patterson et al. 2008). One line of research specifically relevant to the present work is 39 
the use of GPS radio-collar data to infer and analyse animal behavioural states. A common assumption in 40 
the ecology literature is that individual animals have a small set of movement strategies (Nathan et al. 41 
2008), and the time allocation to different behaviours (or “activity budgets”) depends on environmental, 42 
individual animals’ characteristics and external factors (Hooten et al. 2017). There are many approaches 43 
to infer animals’ behaviour from radio-collar data. Some studies have decomposed an individual animal’s 44 
movement trajectory into a broad set of movement bouts based on rates of movement (Johnson et al. 45 
2002). Others have inferred behavioural states based on the time required for an animal to first move out 46 
of a circle centred on a location along their path (Frair et al. 2005) or total time spent in the vicinity of a 47 
location (Barraquand and Benhamou 2008). For example, in carnivore studies in which authors attempt to 48 
derive behaviour from GPS relocation data, the main goal has often been to identify GPS location clusters 49 
indicative of predation or bedding events (Merrill et al. 2010; Ordiz et al. 2011; Rauset et al. 2012). Clusters 50 
form when an animal spends a certain amount of time within a site of a given radius, where time and 51 
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radius are specified by the researcher and should be tailored to the behaviour of the study species and 52 
field conditions.  53 

Movement trajectory and cluster analysis are common techniques for identifying behavioural states, such 54 
as resting (Ordiz et al. 2011), predation (Rauset et al. 2012) or foraging (Bastille-Rousseau et al. 2011; 55 
Hertel et al. 2016a; Hertel et al. 2016b). Frequently used methodologies to study patterns of animal 56 
movement and behaviour are autocorrelation analysis (Boyce et al. 2010) or generalized additive models 57 
for either net squared displacement or step length (Ciuti et al. 2012). The detailed overview of these 58 
techniques can be found in (Gurarie et al. 2016; Hooten et al. 2017). Simple random-utility based models 59 
(such as logit models) have also been used to study the behavioural states (e.g. Ordiz et al. 2011).  60 

While the above-mentioned studies provide interesting insights into animal behavioural states, they are 61 
generally narrow in scope because they focus on the analysis of a single type of behaviour (also referred 62 
to as “activity” from here on) in isolation. This can limit the insights produced due to the lack of the overall 63 
picture: for example, an animal could move in a given direction so that they can conduct another activity, 64 
or because they have been conducting another activity/experienced certain circumstance. 65 

The present work represents an advancement in this field of research not only by analysing engagement 66 
in multiple activities within a given time frame, but by jointly modelling activity choice and its duration. 67 
We refer to such choice processes as discrete-continuous. Many studies involving humans have recognised 68 
the importance of accommodating for the joint nature of multiple discrete-continuous decisions in 69 
econometric models (e.g. Bhat et al. 2005, Calastri et al. 2022, Van Nostrand et al. 2013). In this work we 70 
aim to test whether models accounting for the discrete-continuous nature of activity choice can be used 71 
to infer more detailed insights about animals’ behaviour by acknowledging the connection between the 72 
choice of activity and its duration. For example, an important topic in brown bear research, highly relevant 73 
from the management and conservation perspective, is the impact of hunting on bears behaviour. A few 74 
studies have demonstrated that apex predators may perceive and respond to human-caused risk like prey 75 
responds to a natural predator (Ordiz et al. 2011). However, these studies explore the impact of hunting 76 
on a single behavioural state, for example Hartel et al. (2016a) analysed the impact of hunting on foraging, 77 
Ordiz et al. (2011) analysed the impact of hunting on the choice of places for bedding, whereas in this work 78 
we are able to document the impact of hunting on engagement in multiple activities and their durations. 79 
Our approach allows for better understanding of the full cost in terms of energy expenditure and intake 80 
for bears resulting from hunting. These topics lay in the heart of budget activity (Christiansen et al. 2013) 81 
and foraging ecology (Pyke, 2019).  82 
 83 
Multiple discrete-continuous models have not been previously applied in Ecology, and this paper aims to 84 
present a proof-of-concept of their potential usefulness in this discipline.  85 
In particular, by combining movement trajectory and cluster analysis we identify distinct behavioural 86 
states of brown bears (Ursus arctos) (i.e., rest, forage, move).  We then apply the state-of-the-art Multiple 87 
Discrete-Continuous Extreme Value (MDCEV) model to jointly represent the engagement in and duration 88 
of activities. The long-term individual-animal based dataset used in this study allows us to better 89 
understand the effect of individual bear characteristics, environmental variables and external factors on 90 
bear behaviour over time.  91 
The remainder of this paper is organised as follows. The next section presents the data, before we discuss 92 
the model structure. This is followed by the results of the empirical analysis, and finally, the study 93 
conclusions. 94 
 95 
2. Methods 96 
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2.1. Species description, study area and data collection 97 
 98 
The GPS telemetry data from brown bears are collected as part of the Scandinavian Brown Bear Research 99 
Project (www.bearproject.info), an individual-bear level, long-term population monitoring program in 100 
south-central Sweden. The bear population in the study area has been continuously monitored since 1985 101 
(Swenson et al. 1994). As part of this project, bears are captured by darting (Dan-Inject, Børkop, Denmark) 102 
with an immobilizing drug from a helicopter soon after hibernation and den emergence in late April. 103 
Captured bears are equipped with a GPS collar (GPS Plus; Vectronic Aerospace, Germany) prior to re-104 
release. For more information on capture and handling procedures, see Arnemo et al. (2011).  105 
 106 
The study area is situated in Dalarna and Gävleborg counties in south-central Sweden. The terrain is hilly, 107 
with elevations between 250 and 650m above sea level and mostly covered by intensively managed 108 
coniferous forests mainly composed of Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and birch 109 
(Betula spp.). The human settlement in the area consist of 24 scattered small villages and a few seasonally 110 
used independent houses. Human population density is low and ranges from 4.1 to 7.1 habitants per km2 111 
(Ordiz et al. 2012), but there is an extensive network of forestry roads (Frank et al. 2015). Bear density is 112 
about 30 bears per 1,000 km2 (Bellemain et al. 2005), and bears are hunted in the study area (Frank et al. 113 
2017). The annual brown bear hunting season in Sweden starts on 21 August and lasts for approximately 114 
2 months or until predefined quotas are filled. Hunting is allowed from 1h after sunrise until 2h before 115 
sunset (Bischof et al. 2008, Bischof et al. 2018). 116 
 117 
In this study, we have focussed on GPS relocation data from adult (≥ 4years) bears (Zedrosser et al. 2006, 118 
Zedrosser et al. 2009) collected on an hourly basis between 2008 and 2015. We removed GPS locations 119 
with a dilution of precision >101 from the data (D'eon and Delparte 2005). We focussed our analysis on the 120 
berry season (15th July – 15th September) (Ordiz et al. 2011, Hertel et al. 2018), i.e., the time period when 121 
bears build adipose tissue reserves in preparation for hibernation (Manchi and Swenson 2005). During this 122 
time period, the bears in our study area forage almost exclusively on berries, mainly Vaccinium spp. 123 
(Stenset et al. 2016). As the main purpose of this paper is to showcase MDCEV modelling framework in 124 
ecology, to reduce ecological complexity, we focused on solitary adult males (n=24) and adult females 125 
(n=40). Low satellite coverage may lead to failed GPS fixes (Moe et al. 2007). In only 30.9% of days for 126 
which fixes were recorded, all 24 fixes were available. In order to preserve data quality, we resorted to 127 
retaining observations (at the day level) for which at least 22 hourly fixes had been recorded (50.8% of all 128 
days). While data with up to two discontinuous missing fixes were retained, if the two missing fixes were 129 
contiguous, the whole day of data was discarded. In the case of such discontinuous missing fixes, the 130 
position for the missing hour was approximated as the midpoint between the two nearest available 131 
relocations.  132 
 133 
2.2. Behavioural classifications  134 
Bear behaviour was classified into three activities based on GPS data: foraging, resting, and moving. The 135 
classification of the behavioural states was based on the existing literature for brown bears in the study 136 
area (i.e. Moe et al. 2007, Ordiz et al. 2011, Hertel et al. 2016a, Hertel et al. 2016b). A bear was defined as 137 
exhibiting resting behaviour when a minimum of three consecutive GPS locations within a radius of 30m 138 
were recorded based on 30-minute GPS-relocation data (Ordiz et al. 2011). Given the coarser temporal 139 

 
1 Dilution of precision (DOP) is a term used in satellite navigation and geomatics engineering to specify the error 
propagation as a mathematical effect of navigation satellite geometry on positional measurement precision. 
Observations with DOP larger than 10 are considered as having too large error to be used for analysis (D'eon and 
Delparte 2005). 
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resolution in our data (60 min time intervals), we defined resting behaviour (Rest) as an activity in which 140 
an animal stayed at least 1hour within a radius of 30m. Berry foraging by bears is characterized by slow 141 
and meandering movements (Stelmock and Dean 1988). Hertel et al. (2016a, 2016b) defined berry 142 
foraging in our study population as continuous movements in which a bear covered a distance of 25–300 143 
m over at least three consecutive 30 min intervals. Field validation by Hertel et al. (2016a) confirmed that 144 
bears were foraging on berries at 80% of the locations classified as forage based on GPS-relocation data. 145 
For the purposes of this study, we slightly modified the criterion used by Hertel at al. (2018) and defined 146 
feeding behaviour (Feed) as relocations within a distance of 30–300 m in 60 min (2 consecutive GPS fixes). 147 
Any behaviour with movements longer than 300 m in 60min was classified as Move. This resulted in a very 148 
wide range of travelled distances in this category (i.e., mean=911 m, std dev=592, max distance=8,504m). 149 
Given the temporal resolution of our data, very heterogenous behaviour is likely within a 60 min interval, 150 
including the whole spectrum from mostly feeding to pure travel. We tested two approaches to deal with 151 
the Move category; first, we classified all observations with travelled distances longer than 300m/h as 152 
Move; second, we further divided Move into two subcategories, Short move – including all relocations 153 
ranging between 300m/h and 600m/h, and Move comprising all relocations for which the covered distance 154 
was larger than 600m. The second approach resulted in significantly better model performance and was 155 
used in the final model specification.  156 
 157 
Table 1 presents a summary of the sample characteristics based on the defined criteria.  As can be seen, 158 
all four types of activities are conducted on the vast majority of all days, with Rest being conducted every 159 
day. 160 
 161 
Table 1. Summary statistics of GPS relocation data of radio-collared brown bears during the berry season 162 
(15th July – 15th September) in south-central Sweden, 2008-2016.  163 

 Daily activity duration (hours) 
 Mean Std. dev. Min. Max. 
 Rest 8.72  2.57 2 21 
 Feed  6.00 2.81 0 18 
 Short move  5.47 3.02 0 18 
 Move 3.79 2.06 0 11 
 Bear characteristics  
 Mean Std. dev. Min. Max. 
Sex 40 – females 

24 – males 
   

Age (years, average in sample) 9.36 4.32 5 22 
 Number of observations (days) (% of the sample) 
July (15th – 30) 1,321 (28%) 
August (1st – 31) 2,399 (51%) 
Sept (1st – 15th)  967 (21%) 
Days with Rest > 0h 4,687 (100%) 
Days with Feed >0h 4,647 (99.1%) 
Days with Short move>0h 4,508 (96.2%) 
Days with Move>0 4,505 (96.1%) 
 Mean Std. dev. Min. Max. 
Number of obs (days) per bear 73.25 60.36 1 266 
Total number of observations 4,687 

 164 
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3. Modelling framework 165 
3.1. Overview 166 
The family of Multiple Discrete-Continuous Extreme Value (MDCEV) models initially developed by Bhat 167 
(2005) and subsequently extended in different directions (Bhat, 2008; Castro et al., 2012; Pinjari and Bhat, 168 
2010, Mondal and Bhat, 2021, Palma and Hess, 2022), represents the current state of the art in modelling 169 
multiple discrete-continuous choices. Human travel behaviour has been the main field of application of 170 
this modelling framework, for example in the study of the choice of vehicle type and mileage (Bhat and 171 
Sen, 2006), and to type and duration of activities (Bhat, 2005; Calastri et al., 2022). Application beyond 172 
transport choices include those analysing residential energy consumption (Iraganaboina, & Eluru, 2021), 173 
social interactions (Calastri et al., 2017) and consumer purchase behaviour (Lu et al., 2017). To the best of 174 
our knowledge, MDCEV has never been applied to the study of animal behaviour. 175 
 176 
 The model is derived coherently with the random utility maximisation theory in economics, but 177 
relaxes the mutual exclusivity assumption inherent in traditional discrete choice models. This means that 178 
subjects are not constrained to selecting one option (in our case one activity) but allocate their available 179 
resources to a combination of these. While the model has been developed in the generic context of 180 
consumption choices, we describe it in terms of time allocation decisions, in line with the application 181 
presented in this paper.  182 
 The MDCEV model is based on a direct utility function U(x) that individuals (in this case bears) 183 
maximise by choosing to allocate a vector x of non-negative time intervals to each of the K possible 184 
activities, x = (x1,...,xK). The choice of total time allocation is subject to a time “budget” constraint ∑𝑥 = 𝐸, 185 
where E is the total time available. 186 

The vector x generally includes a so-called “outside activity” to represent allocation to an activity 187 
that is always undertaken by all the individuals (bears) in the sample, in our case Rest. A decision needs to 188 
be made on the unit of measurement. In our case we work with data at the day level, implying a time 189 
budget of 24 hours per observation. The time budget takes the following form: 190 

%𝑥 = 𝐸, 	𝑥! > 0, 	𝑥" ≥ 0	∀	𝑘	(𝑘 = 2,…𝐾)		
#

"$!

 
 (1) 

where in our model activity 1 is Rest , i.e. the outside activity, and K=4 (Rest, Feed, Move and Short move) 191 
and E=24 hours. 192 
 193 
3.2. Econometrics 194 
The utility formulation, introduced by Bhat (2008) is given by: 195 
 	𝑈(𝑥) = !

%!
𝜓!𝑥!%! + ∑

&"
%"
𝜓" 55

'"
&"
+ 17

%"
− 17#

"$( ,  (2) 196 
such that U(x) is quasi-concave, increasing and continuously differentiable with respect to x and ψ. ψk is 197 
the baseline utility accrued from activity k. It is a function of observed characteristics of the individual 198 
(bear) and of activity k, zk, which also includes a constant δk representing the generic preference for activity 199 
k, so that 𝜓" = 𝜓"(z)) ∗ e*#  . The parameters γk and αk relate to activity k. The γk parameters are 200 
translation parameters that allow the model to accommodate corner solutions, i.e. observations for which 201 
no time is allocated to a given activity k. They also affect satiation, as a higher γk implies that more time 202 
invested in the corresponding activity (xk) is needed to reach saturation. The αk parameter is solely 203 
associated with the satiation effect, i.e., decreasing marginal utilities. 204 

Empirical identification requires some constraints for normalisation, and in our work, we make 205 
use of the implementation of the MDCEV model in which we have product-specific γ parameters, i.e. we 206 
estimate γk parameters for k = 2,3,4, along with a generic satiation parameter α. As in most of the work in 207 
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the literature, all the model specifications that we estimated displayed an extremely small value of α for 208 
which we could not reject the null hypothesis that it was equal to zero, where, with α → 0, the utility form 209 
collapses to a log utility formulation (cf. Bhat, 2008) with: 210 

 	211 
𝑈(𝑥) = 𝜓!ln	(𝑥!) + ∑ 𝛾"𝜓" 5

'"
&"
+ 17#

"$(   (3) 212 
This formulation implies that direct utility increases with additional units of consumption in a logarithmic 213 
fashion, i.e. with diminishing returns. The only parameters relating to satiation that we estimate are the 214 
γk terms, which can be interpreted in terms of how long the activities of Feed, Move and Short move are 215 
performed for. 216 
The probability that an individual (bear) chooses a specific vector of time allocations x1∗,x2∗,...,xM∗,0,...,0, 217 
where M of the K activities are performed in a given day, is given by: 218 

       	𝑃(𝑥!∗, 𝑥(∗, … , 𝑥,∗ , 0, … ,0) =
!
-!

!
.$%!

(∏ 𝑓/,
/$! ) 5∑ -&

0&
,
/$! 7 B ∏ 2

'( )*$
&+!

3∑ 2
'" )*,

"+! 5
$C (𝑀 − 1)!,                         (4) 219 

where σ is an estimated scale parameter and where 𝑓/ = 5 !6%
'&∗ 7&&

7 . 220 
 221 
3.3. Specification for our study 222 
 223 
3.3.1 The discrete choice 224 
As mentioned above, the baseline utility ψk broadly captures the “discrete choice”, i.e., the likelihood of 225 
performing an activity. In the present study, this is composed of a constant δk and additive shifts for each 226 
of the covariates we consider. Differently from discrete choice models, the δ constants in the MDCEV 227 
model are influenced by both the discrete and the continuous parts of the model, and this explains the 228 
fact that the values for the constants for the non-base activities can be positive even though the base 229 
alternative (Rest) is conducted more often.  230 
 231 
3.3.2 The continuous choice 232 
Analogously, in the case of the satiation component, we estimate one γk for each activity but allow for 233 
heterogeneity as a function of covariates, i.e., measuring the impact of the covariates on the continuous 234 
choice. Differently from the case of the baseline utility, the parameterisation of γk was operationalised in 235 
a multiplicative fashion. For example, the overall satiation from activity k was expressed as: 236 
             𝛾" = 𝛾",9:;2 ∗ ∏ 𝑓"(𝑧<)=

<$!                                                                                                                           (5) 237 
where 𝛾",9:;2 is a constant for activity k (reported as “Core parameters” in Table 3), 𝑧<  is one of a set of 𝐼 238 
covariates. For categorical variables, such as sex, we set a base category, and estimate a multiplier for 239 
others, meaning that for a covariate with L levels, we use 𝑓"(𝑧<) = ∑ 𝜅<"> ⋅ (𝑧< == 𝑙)?

>$! , where (𝑧< == 𝑙) 240 
is equal to 1 if 𝑧<  takes the 𝑙@A level, and zero otherwise, and where we fix 𝜅<"> = 1 for one category. For 241 

continuous variables, we use 𝑓(𝑧<) = 5𝑧< 𝑧BKL 7
C("

, where the estimate of 𝜆<" captures the non-linearity. 242 
We retained those effects in the model where the 𝜅<">  multipliers are significantly different from 1, or 243 
where the elasticity parameters 𝜆<" were different from 0, implying that 𝑓(𝑧<) is different from 1. 244 
 245 
3.3.3 Explanatory variables 246 
In our MDCEV application, we have tested the effect of a range of variables that have been demonstrated 247 
by a large amount of ecological literature to be related to brown bears’ behaviour. These mainly relate to 248 
environmental/climatic factors, characteristics of the animal and potential human impacts. Here and in 249 
the Results section, we only describe the variables for which statistically significant effects on activity 250 
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choice and duration were found. These include the bears age, sex, and two climatic variables. The full list 251 
of the variables used in the final model specification is reported in Table 2. 252 
 253 
Table 2 – Explanatory variables used in the model 254 

Variable Type of variable Description 
Sex Categorical 1= Solitary adult female 

0= Solitary adult male 
Age Categorical 1= 4-8 years old 

2= 9-15 years old 
3= Older than 15 

Average daily temperature Continuous Range: 4.63-22.1 °C 
Mean: 13.12 °C 

Average daily precipitation Continuous  Range: 0-33.47 mm 
Mean: 2.94 mm 

Daily duration of daylight* Continuous Range: 12.89-18.36 h 
Mean: 15.73 h 

Daily duration of twilight* Continuous Range: 3.24-7.23 h 
Mean: 4.86 h 

Daily duration of night* Continuous Range: 0-7.86 h 
Mean: 3.40 h 

Hunting season Categorical 1= hunting season 
0= not hunting season 

* Calculated for the central location of our study area (Tackåsen, Sweden: 61.5N, 15.05E)  255 
 256 
The climatic variables related to temperature and precipitation were obtained from the Swedish 257 
Meteorological and Hydrological Institute (SMHI). In particular, station-specific time series within the study 258 
area were converted using the R package “mba” (Finley & Banerjee, 2014) to interpolated raster series 259 
with a 5-day temporal resolution and a 5 km spatial resolution. To account for variation across the study 260 
area, the raster values of these climate variables associated with the area inhabited by each bear were 261 
averaged using a circular home range with a sex-specific average home range diameter (Bischof et al., 262 
2018). In our models, we tested minimum, maximum and average temperature. Since the focus of our 263 
study is to understand how animals allocate time to different activities across 24 hours, the mean 264 
temperature seemed to be the most appropriate measure. The R (R Core Team, 2020) library “maptools” 265 
(Bivand and Lewin-Koh, 2020) was used to determine the length of day, night, and twilight for every day 266 
during the berry season. We consider as “Daylight” the period between sunrise and sunset, “twilight” as 267 
the time period between sunset and nautical dusk (i.e., when the sun moves to 12 degrees below the 268 
horizon in the evening) and from nautical dawn (when the sun moves to 12 degrees below the horizon) to 269 
sunrise. The remaining time (i.e., between nautical dusk and dawn) is defined as “night”.  Due to high 270 
correlation between Daylight and Night duration only the former variable has been retained in the model. 271 
This variable is also a good proxy for the time elapsed so far in the berry season, as the Daylight duration 272 
changes linearly in the study period. The dummy variable taking value 1 for the time between 21 August – 273 
15 September is used to test whether the hunting season affects the bears’ behaviour. The MDCEV model 274 
was estimated using the “apollo” package (Hess & Palma, 2019) in R (R Core Team, 2020).  275 
 276 
4. Model results 277 
 278 
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The final model results are presented in Table 3. We look first at the baseline parameters that relate 279 
primarily to the discrete choice, before looking at the satiation parameters that relate more to the 280 
continuous choice. The baseline parameters have limited interpretation (Bhat, 2018). 281 
 282 
Table 3 – Model results 283  

Coefficient Estimate Rob. t-ratio (0) Rob. t-ratio(1) 
Baseline 
parameters 

α 0 (fixed) NA NA 
γ feed 4.099 15.174 11.472 
γ move 7.062 12.609 10.824 
γ short move 4.107 19.403 14.679 
δ feed 0.668 2.289 -1.135 
δ move -2.568 -9.067 -12.598 
δ short move -2.175 -17.939 -26.186 

Shifts in the δ 
parameters 

Age 16+ feed 0.081 2.729 -30.781 
Age 16+ move -0.361 -9.928 -37.394 
Female short move 0.263 7.419 -20.713 
Daylight duration feed -1.294 -7.649 -13.556 
Daylight duration move 0.705 4.195 -1.75 
Daylight duration short move 0.342 4.572 -8.814 
Hunting period feed -0.142 -4.788 -38.401 
Hunting period move 0.047 1.051 -21.048 
Temperature feed 0.008 1.832 -208.204 
Temperature move -0.008 -3.783 -429.586 
Precipitation move -0.052 -3.856 -77.558 

Multipliers of 
the γ parameters 
(𝜅<") 

Female feed (base=male) 1.256 16.827 3.431 
Female short move 
(base=male) 0.908 17.357 -1.738 
Hunting period move 
(base=outside hunting period) 0.943 10.18 -0.608 

Exponential 
term in γ 
multipliers (𝜆<") 

Daylight duration feed 1.804 5.071 2.261 
Daylight duration move -0.695 -1.415 -3.451 

Precipitation move 0.013 2.414 -182.821 
Temperature feed -0.045 -0.375 -8.624 

Scale Scale parameter (σ) 0.272 64.741 -173.423 
Model performance: Final LL: -32116.1; AIC: 64282.21; BIC: 64443.52 284 
 285 
4.1. Shifts in the δ parameters 286 

We found find that within a 24-hour time span, older bears (aged 16 years or over) are more likely to Feed 287 
and less likely to Move compared to younger ones (cf. Table 3). The coefficient “Female short move” points 288 
to the fact that females are more likely to move than solitary males, suggesting that they are more likely 289 
to do a combination of activities in the given time frame. When the day lasts longer (i.e., at the beginning 290 
of the berry season), the baseline utility of moving and short moving increases, while that of foraging 291 
decreases.  292 
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The start of the hunting season has a significant effect on bear behaviour, i.e., the bears are more likely to 293 
move and less likely to feed (cf. Table 3). Interestingly, since in our application all activities are modelled 294 
jointly, we see that decreased probability of feeding is accompanied by increased probability of moving, 295 
with short move being unaffected.  296 
We tested for the effect of daily temperature in different forms (i.e., min, max, range, average), and daily 297 
average temperature had the highest explanatory power and was retained in the final model specification. 298 
A higher likelihood of Feed and a lower likelihood of Move are associated with increases in temperature 299 
(Table 3).  300 
The shift of the δ parameters as a consequence of precipitation (in mm) shows that an increase in this 301 
variable is linked with a lower likelihood to Move.  302 
 303 
4.2. Multipliers of the γ parameters 304 

 305 
The results related to the parameterisation of the γ parameters are shown in the bottom part of Table 3. 306 
Due to the fact that they enter the satiation equation multiplicatively, these parameters have a significant 307 
impact if they are significantly different from 1. Female bears are found to spend longer time in Feed and 308 
Short move as opposed to males. We also observe that during the hunting period, bears spend more time 309 
moving as opposed to outside of the hunting season. This indicates that not only the probability of Move 310 
increases due to hunting but also time spent in this activity increases.  311 
The last set of parameters in Table 3 measure the sensitivity of the overall satiation to changes in 312 
continuous variables. Figure 1 shows the impact of the duration of daylight on the satiation from Feed and 313 
Move, given the estimated values of 𝜆<". 314 
 315 
Figure 1: Effect of the duration of daylight on satiation parameters 316 

  317 
A positive value of this exponential term (cf. “Daylight duration feed”) implies that as the duration of 318 
daylight increases, the activity (Feed) will be performed for longer. The opposite is true for Move. This 319 
implies that at the beginning of the berry season, if bears engage in feeding, they will do so for longer than 320 
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at the end of the berry season. The opposite is true for Move. This is likely related to the fact that the end 321 
of the berry season corresponds with the hunting season, when bears feed less and move more. 322 

The magnitude of the changes in satiation is determined by the value of the estimated parameters and 323 
the baseline value (𝛾"𝑏𝑎𝑠𝑒). Precipitation positively affects the value of the satiation parameter for Move, 324 
although its small value results in a slowly increasing trend (cf. Figure 2). Higher temperatures imply a 325 
smaller amount of time spent foraging (cf. Figure 3). 326 

Figure 2. Effect of the amount of precipitation on the satiation parameter for move 327 

 328 
 329 
Figure 3. Effect of temperature on the satiation parameter for Feed 330 
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4.3 Model validation 334 

In order to obtain a measure of how well our proposed model performs at capturing the trends in the data, 335 
we have carried out a prediction of the shares of days on which a given activity is carried out, as well as of 336 
the activity duration and compared it with the data. This is what is sometimes referred to as “base” 337 
prediction, i.e. applying the model without introducing any changes to the data. As shown in Table 4, the 338 
differences between the discrete and continuous choice statistics in the data and in the prediction are 339 
limited, and the RMSE is low in both cases, indicating that the model adequately replicates the behaviour 340 
in the data. 341 
 342 

Discrete choice (share of days with non-zero time 
in activity) Continuous choice (hrs spent) 

Activity Share in data Predicted share Average duration in data Average predicted duration 
Rest 1.00 1.00 8.73 8.56 
Feed 0.99 0.99 6.00 5.95 
Short Move 0.96 0.97 3.80 3.92 
Move 0.96 0.95 5.47 5.58 

RMSE= 0.12 RMSE=0.01 

 343 

5. Discussion 344 
In this paper, we present a proof-of-concept for the application of advanced econometrics models to 345 
understand the behaviour of wild animals. Addressing the limitations of previous studies, we produced a 346 
model of brown bear behaviour where we model engagement in multiple activities, considering not only 347 
which activities are conducted but also the amount of time invested in each. We showed how both the 348 
discrete and continuous outcomes are related to the characteristics of the animals themselves as well as 349 
to environmental variables and external factors (i.e. hunting). While the MDCEV modelling framework 350 
adopted was not previously used to improve the understanding of animal behaviour, we demonstrated 351 
how this tool can be suitable for our investigation by obtaining results in line with existing work as well as 352 
providing new insights made possible by the specific model structure. 353 
 354 
To start with, our classifications of the different activities inferred via the GPS relocation data allowed us 355 
to unveil behavioural patterns correlated with bear characteristics. We showed that female bears are more 356 
likely to engage in the Short Move activity and do so for longer compared to males. This is an example of 357 
a finding allowed by the MDCEV model, i.e., capturing discrete and continuous behaviour contextually. As 358 
explained in the Methods section, this activity is most likely to be made up of a mixture of different 359 
activities, implying that female bears have a more varied pattern of behaviour within each observed time 360 
slot. We have also shown that older bears are more likely to engage in foraging rather than travelling long 361 
distances.  362 
 363 
Capturing both the discrete and the continuous outcomes allowed us to gain a more complete picture of 364 
behaviour, as we understand which characteristics are associated with activity duration instead of only 365 
providing insights on which activities are performed. A key result of our model is that during the hunting 366 
season, bears are less likely to feed and more likely to move – and do so for longer periods of time. This 367 
finding is in line with existing ecological literature which demonstrated that apex predators may perceive 368 
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and respond to hunting risk similar to that of prey responding to a natural predator (Ordiz et al. 2011; 369 
Brook et al. 2012) , forcing them to increase vigilance at the expense of foraging. 370 
 371 
 Our results conform well with Hertel et al. (2016b), who found that bears effectively responded to 372 
variation in risk during the day by decreasing their foraging activity in the morning hours of the hunting 373 
season and not changing their behaviour in the afternoon foraging bout, indicating that bears did not 374 
allocate antipredator behaviour to times of comparably lower risk. On the other hand, contrary to the 375 
existing literature, which has focused on modelling one activity (Hertel et al. 2016a, Hertel et al. 2016b, 376 
McLellan and McLellan 2015, Steyaert et al. 2016), the MDCEV framework allows us to directly identify the 377 
trade-offs in bears behaviour. Bears reduce risk from hunting by increasing probability of Move and its 378 
duration, this happens at the cost of the forage activity. This shows that hunting affects the energy budget 379 
of bears in a more complex way than identified in the literature (Sahlen et al. 2015, Steyaert et al. 2016, 380 
Hertel et al. 2016b), that is, not just by lowering energy intake by decreasing foraging activity, but also by 381 
increasing energy expenditure as they are more likely to Move and do it for a longer period. This shows 382 
that hunting season is highly costly for bears in terms of energy balance, as they are less likely to feed and 383 
more likely to move at this crucial time for their energy intake, i.e., before hibernation. The additive effect 384 
of reduced forage intake and higher engagement in movement is likely to result in poorer body condition 385 
upon den entry and may ultimately reduce winter hibernation survival and reproductive success. This 386 
result potentially enables managers and conservationists to better understand the ecology of this species 387 
as well as how people affect its behaviours and what are the consequences on energy expenditure and 388 
survival. 389 
The sign and magnitude of the 𝜆<" parameters combined with the shift in the δ parameters (i.e. Daylight 390 
duration Feed) showed that as Daylight duration decreases, bears are more likely to Feed but will carry out 391 
this activity for a shorter period of time. Exactly the opposite pattern is true for Move, that is as Daylight 392 
duration decreases bears are less likely to Move but will carry out this activity for a longer period of time 393 
if it is conducted. The opposing trends displayed as time advances in the berry season indicates that bears 394 
constantly change (adapt) their foraging strategy during the studied period. A possible explanation of the 395 
observed phenomena is that at the beginning of the berry season, food is scarcer (or of lower quality) and 396 
once bears find a feeding place, they will carry out the Feed activity for longer, as there are no good 397 
alternatives available; whereas later in the berry season, when more berry species are available and food 398 
is more abundant, bears will travel between high quality spots. This interpretation is in line with what has 399 
been reported by Hertel et al. (2016b), who showed that in the berry season, bears are selective and 400 
navigate in the forest landscapes by using areas of higher than average berry abundance. 401 
 402 

Overall, this study is innovative in two ways: it demonstrated the application of a state-of-the art 403 
discrete-continuous model to a new field of research, and it shows not only that results which are intuitive 404 
and in line with the literature can be obtained, but also that new insights can be added due to the more 405 
comprehensive approach looking at different activities and at both choice of activities and activity 406 
duration. In particular, this approach allowed us to distinguish cases of zero time in an activity (i.e. a corner 407 
solution) from small non-zero times, and that is allows for a study of satiation, i.e. non-linear gains in utility 408 
from additional consumption. In terms of specific conclusions for our case study, the proposed approached 409 
allowed us to observe that the disturbance due to hunting affects energy expenditure as it impacts on 410 
multiple activities, namely feeding and moving. It also allowed us to understand key differences across the 411 
animals. For example, we found that female bears not only engage in different types of activities (e.g. 412 
Short Move) but also do so for different durations with respect to their male counterpart. 413 

 414 
 Like any study, we acknowledge that our work has a number of limitations. The classification of 415 
the moving activity in two separate activities is subjective and while it helps with the interpretation of 416 
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results, it might not be ecologically accurate, and could impact our findings. Especially in the case of Feed 417 
and Move, our activity classification is rather coarse with respect to studies using human data collected 418 
with smartphone or GPS trackers that can virtually capture any movement. This is a result of working at 419 
the level of one-hour data. Finer temporal resolution (i.e., GPS fixes every 30min or 15min) would allow 420 
for more reliable classification and understanding of behaviours, as it is likely that bears undertake a 421 
mixture of activities during 1h intervals. At the same time, this would be very battery-intensive and would 422 
require capturing and re-releasing bears more often to change the batteries, which is expensive and may 423 
not be possible due to animal welfare concerns. Additional improvement of the method could be achieved 424 
by linking the GPS data with other high-resolution data such as, 3D accelerometers, heart-rate sensors. 425 
Moreover, as this study aims to be a proof-of-concept, we only used a sub-set of the available data. Using 426 
a larger and more comprehensive dataset could unveil further patterns of behaviour, for example the ones 427 
of younger animals and females with dependent offspring. We leave these developments to future work, 428 
with the main aim of the present paper being to present the method and its potential.  429 
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