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Latent class models have long been a tool for capturing hetero-
geneity across decision-makers in the sensitivities to individual at-
tributes. More recently, there has been increased interest in us-
ing these models to capture heterogeneity in actual behavioural pro-
cesses, such as information/attribute processing and decision rules.
This often leads to substantial improvement in model fit and the
apparent finding of large clusters of individuals making choices in
ways that are substantially different from those used by others. Such
findings have however not been without criticism given the potential
risk of confounding with other more model-specific heterogeneity.
In this paper, we consider an alternative approach for exploring the
issue by contrasting the findings obtained with model averaging,
which combines the results from a number of separately (rather
than simultaneously) estimated models. We demonstrate that model
averaging can accurately recover the different data generation pro-
cesses used to create a number of simulated datasets and thus be
used to infer likely sources of heterogeneity. We then use this new
diagnostic tool on two stated choice case studies. For the first, we
find that the use of model averaging leads to significant reductions
in the amount of heterogeneity of the type analysts have sought to
uncover with latent class structures of late. For the second, results
from model averaging show clear evidence of the existence of both
taste and decision rule heterogeneity. Overall, however, our results
suggest that heterogeneity in the sensitivities to individual attributes
rather than the behavioural process per se could be the key factor be-
hind the improvements gained through the adoption of latent class
models for heterogeneity in behavioural processes.
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1. Introduction

Over the last decade, there has been increasing interest by choice modellers to allow for de-
partures from traditional decision rules (Chorus, 2014) and/or the way in which individuals
process the information describing the alternatives (Hensher, 2014). Much of the work has
looked at contrasts between models using one specific alternative decision rule or process to
the results against an alternative model, i.e. fitting the same process to an entire sample of
decision-makers. However, a growing number of studies (Hess and Rose, 2007; Scarpa et al.,
2009; Hensher and Greene, 2010; Campbell et al., 2010; Hole, 2011; Hensher et al., 2012;
Hess et al., 2012; Charoniti et al., 2020; Rezapour and Ksaibati, 2021; Smith et al., 2021) have
also looked at allowing for heterogeneity in the actual underlying model structure across in-
dividuals in a single sample. This work has mainly made use of latent class (LC) structures,
with two key applications, namely decision rule heterogeneity (where the different classes
within a latent class model adopt different decision rules) and in information processing
work (where typically the same model is used in the different classes but with different
attributes included). In both of these applications, the key idea is that each of the classes
will better capture the choices of some share of the decision-makers.

While the work using latent class structures for heterogeneity in either decision rules or
information processing strategies has been shown to lead to substantial improvement (Hess
and Rose, 2007; Hess et al., 2012) in fit and apparent meaningful insights, it has also not
been without criticism. In particular, concerns have been raised about the extensive risk of
confounding between heterogeneity in the sensitivities to individual attributes and hetero-
geneity in the process or model structure.

In a traditional latent class model, the different β parameters in different classes are used
solely to uncover taste heterogeneity. In a latent class model that combines different struc-
tures in different classes, these individual models will themselves be making use of different
β parameters, while in the case of attribute non-attendance (ANA), they will use different
combinations of the β parameters. For reasons of complexity, the vast majority of applica-
tions have used just a single class per behavioural process, whether that be one class for
each decision rule (e.g. Random Utility Models (RUM), Random Regret Minimisation (RRM),
etc) or one class for each of the combinations of considered attributes in an ANA context.
Maximum likelihood estimation will simply converge to those parameters that give the best
mathematical fit to the data. For example, imagine a situation where the decisions of all
individuals in the data are best explained by a RUM structure, but where there are varia-
tions across individuals in the sensitivity to for example the cost attribute. If the analyst
estimates a LC model with two classes, where one class uses a RUM model and the other
class uses a RRM model, then the only mechanism available to maximum likelihood process
for explaining the heterogeneity in cost sensitivities is to allocate a non-zero class allocation
probability to both the RUM and RRM classes, with different cost coefficients in the two
models. In other words, even in the absence of decision rule heterogeneity, the model will
uncover such heterogeneity if the benefit of being able to use different cost sensitivities in
the RUM and RRM classes outweighs the loss in fit of using a RRM model to explain the
choices of people who made decisions more in line with RUM. There is thus the real possi-
bility that apparent evidence of decision rule heterogeneity will be driven by heterogeneity
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in sensitivities rather than actual decision process.

These concerns have found empirical support in the work of Hess et al. (2013b) who show
that the share for non-attendance classes reduces substantially when allowing for additional
random heterogeneity, while the work of Hess et al. (2016) shows that allowing for random
heterogeneity in the parameters of RUM and RRM models within a RUM-RRM mixture
model substantially reduces the extent of decision rule heterogeneity. The use in practice
of such latent class models allowing for different structures in different classes continues
to be very popular (Boeri and Longo, 2017; Dey et al., 2018) despite these concerns. A
key reason is likely that the inclusion of additional taste heterogeneity (moving from finite
latent class models to continuous mixture models), as in the work of Hess et al. (2013b)
and Hess et al. (2016) is computationally very difficult. The same applies to the inclusion
of additional classes with models of the same type (e.g. using two RUM classes and two
RRM classes), where this also leads to a proliferation in the number of parameters. Whilst
there are of course other methods that can be adopted to explore these and other kinds
of heterogeneity, the key aim of the present paper is to specifically consider a different
approach to further examine the results of these latent class models which are so popular,
but without increasing computational demands. We do this by highlighting how model
averaging can be used as a diagnostic tool for the potential confounding between taste
heterogeneity and other heterogeneity highlighted in these models.

Model averaging uses a sequential latent class approach, estimating first the individual
candidate models at the sample level, before then combining these models in a latent
class model which keeps the model-specific parameters fixed and only estimates the model
weights. We illustrate this process on simulated data as well as typical stated preference
(SP) data and show that model averaging can provide additional insights that could allow
an analyst to reach a more informed decision as to the key drivers of heterogeneity in a
model.

The aim of using model averaging in the present paper is to investigate potential cases of
confounding in models using simultaneous estimation of different model structures. Of
course, a caveat applies in that it is also possible that the presence of decision rule hetero-
geneity and/or heterogeneity in processing strategies can only be uncovered when estimat-
ing models in which the parameter estimates for the different subclasses are informed more
by some individuals in the data than by others, as would be the case in simultaneous estima-
tion. We address this point specifically by showing the possibility of including some models
within the set M that themselves allow for heterogeneity. For example, it is straightforward
to allow a given model m to be itself a LC or mixed multinomial logit (MMNL) structure.
As the model will be estimated separately rather than as part of the overall model averag-
ing structure, we avoid the computation issues of including complex structures within an
overall latent class structure.

The remainder of this paper is organised as follows. We first summarise the methodology
in Section 2. This is followed by a simulated data experiment demonstrating how model
averaging can help recover the original data generation process (Section 3). The core empir-
ical work follows in Section 4, where we look both at attribute non-attendance and decision
rule heterogeneity for two stated preference (SP) case studies. Finally, some conclusions are
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presented in Section 5.

2. Methodology

Latent class (LC) structures have long been used as a tool for introducing heterogeneity
across individual decision-makers in choice models (see Greene and Hensher, 2003; Hess,
2014, for background). In a latent class model, the population is probabilistically divided
into S different classes, where the log-likelihood (LL) for the choices observed for a set of N
decision-makers is given by:

LL(β ,π) =
N

∑
n=1

ln

(
S

∑
s=1

πns

Tn

∏
t=1

Pj∗nt
(βs)

)
, (1)

where j∗nt is the actual alternative observed to be chosen by person n in situation t. We
have that π = 〈π1, . . . ,πN〉, with πn a vector whose element πns gives the share (probability)
of individual n belonging to class s such that ∑

S
s=1 πns = 1, ∀n and 0 ≥ πns ≥ 1, ∀n,s. These

class allocation probabilities can vary across individual decision-makers as a function of
their characteristics, using a class allocation model, such that πn = f (γ,zn) where zn are
characteristics of person n and γ is a vector of estimated parameters.

In almost all applications of latent class models, Pj∗nt
(βs) is of the Multinomial Logit (MNL)

type. Even when this was not the case, for example using Nested Logit (NL) models inside
a LC structure, the focus for the first two decades of widespread use of LC models was
very much on a case where the functional form of Pj∗nt

(βs) is the same across classes (i.e.
s = 1, . . . ,S), with differences only in the parameters used in the classes, i.e. βs in class s,
where β = 〈β1, . . . ,βS〉. This use of latent class models thus focusses on capturing what would
typically be called “taste heterogeneity" while maintaining homogeneity in the underlying
behavioural process across individual decision-makers.

Latent class models have more recently been used for heterogeneity in decision rules and
information processing. While the former has received more attention, the latter work
actually takes historical precedence.

A key interest in the field of information processing strategies (IPS) or attribute processing
strategies (APS) has been the notion that some decision-makers may actually make their
choices based on only a subset of the attributes that describe the alternatives at hand. This
phenomenon is typically referred to as attribute non-attendance (ANA) or attribute ignoring,
and an in-depth review of work in this area is given in Hensher (2010). The interest in
this topic in the present discussions comes in the context of ways to accommodate ANA
in models. A key role in this area was played by the early discussions in Hess and Rose
(2007), who proposed the use of a latent class approach to accommodate ANA, a method
since adopted by numerous other studies (e.g. Scarpa et al., 2009; Hensher and Greene,
2010; Campbell et al., 2010; Hole, 2011; Hensher et al., 2012; Smith et al., 2021). With
this approach, different latent classes relate to different combinations of attendance and
non-attendance across attributes. For each attribute treated in this manner, there exists a
non-zero coefficient (to be estimated), which is used in the attendance classes, while the



EJTIR 21(3), 2021, pp.38-63
Hancock and Hess
What is really uncovered by mixing different model structures: contrasts between latent class and model averaging.

42

attribute is not employed in the non-attendance classes, i.e. the coefficient is set to zero.
In a complete specification, covering all possible combinations, this would thus lead to 2K

classes, with K being the number of attributes, where a given coefficient will take the same
value in all classes where that attribute is included.

In addition to the vector β , we now have a SxK matrix Λ, in which each row, s, contains
a different combination of 0 and 1 elements, where S = 2K . Next, let A◦B be the element-
by-element product of two equally sized vectors A and B, yielding a vector C of the same
size, where the kth element of C is obtained by multiplying the kth element of A with the kth

element of B. Using this notation, the specific values used for the taste coefficients in class
s are then given by the vector βs = β ◦Λs. The kth element of the vector βs is thus the kth

element of β if Λs,k = 1, and zero otherwise. The log-likelihood is then given by:

LL(β ,π) =
N

∑
n=1

ln

(
S

∑
s=1

πns

Tn

∏
t=1

Pj∗nt
(βs = β ◦Λs)

)
. (2)

A different application of such heterogeneous structures in different classes has arisen in
the context of decision rule heterogeneity. There has long been interest in the notion
that different individuals make their decisions in different ways, going back to work in
psychology in the 1970s (Montgomery and Svenson, 1976). Although structures belonging to
the family of random utility models have come to dominate, it is important to recognise that
alternative paradigms for decision-making have been proposed, for example the elimination
by aspects model of Tversky (1972), but also more recent work based on the concepts of
happiness (Abou-Zeid and Ben-Akiva, 2010) and regret (Chorus et al., 2008; Chorus, 2010).
The evidence in the literature is that which paradigm works best is very much dataset
specific.

Hess et al. (2012) put forward the hypothesis that variations in decision rules may be across
decision-makers with a single dataset, not just across datasets, and propose the use of a
confirmatory latent class (CLC) approach in this context. Specifically, let P(m)

j∗nt
(βm) give the

probability using a model of type m, with a vector of parameters βm. The Hess et al. (2012)
framework is based on the idea that different behavioural processes are used in the data.
The original exposition by Hess et al. (2012) assumes that a different model type m is used
in each class S, but this is not a requirement, and the same model structure could be used
in more than one class. We then have:

LL(β ,π) =
N

∑
n=1

ln

(
S

∑
s=1

πns

Tn

∏
t=1

Pms
j∗nt
(βs)

)
, (3)

where ms identifies the behavioural process used in class s, with βs giving the vector of
parameters used.

Hess et al. (2012) use the model to allow for mixtures between random utility maximisation,
random regret minimisation (RRM) and elimination by aspects. They also discuss allowing
for additional continuous random heterogeneity in parameters within individual classes,
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such that:

LL(Ω,π) =
N

∑
n=1

ln

(
S

∑
s=1

πns

∫
βs

Tn

∏
t=1

Pms
j∗nt
(βs) f (βs |Ωs)dβs

)
, (4)

where βns ∼ f (βns |Ωs) and Ω = 〈Ω1, . . . ,ΩS〉. In later work, Hess and Stathopoulos (2012)
use an approach as in Walker and Ben-Akiva (2002) and Hess et al. (2013a), making the class
allocation a function of a latent factor, which in this case also explains decision-makers’ real
world choices1.

Model averaging, in this context, can be implemented as a sequential latent class model.
Whereas a simultaneous model estimates the parameters of the class-specific models at the
same time as the class allocation probabilities, a model averaging approach uses a sequential
process. We first separately estimate the individual model from each class on the entire
sample, before estimating the class allocation probabilities separately with the individual
model parameters fixed. To apply model averaging, we thus first estimate a number of
different individual models, where say L(m)

n (Ωm) gives the likelihood of the sequence of
choices observed for person n, conditional on using model m, where this model uses a
vector of parameters Ωm. An analyst will estimate M different such models. Each model is
estimated separately on the same data. Crucially, this implies that there needs to be some
difference in the functional form between the different models, e.g. using different utility
specifications, different mixing distributions, different attribute processing rules or indeed
different decision rules. Indeed, any two models using the exact same structure will clearly
converge to the same solution. Within-structure heterogeneity in sensitivities can easily be
accommodated by some of the models being themselves LC or MMNL structures. In the
context of the present paper, the set of M models would use different specifications for IPS
or different specifications in terms of the underlying decision rules. The model averaging
process then computes the overall likelihood for person n as the weighted average across M
models, with the full sample log-likelihood given by:

LL(Ω,π) =
N

∑
n=1

ln

(
M

∑
m=1

πnmL(m)
n (Ωm)

)
, (5)

where ∑
M
m=1 πnm = 1, ∀n and 0≤ πnm ≤ = 1, ∀n,m. This overall log-likelihood is conditional

on the vector of weights πn = 〈πn1, . . . ,πnM〉 for each person and the combined parameter
estimates from the different models Ω= 〈Ω1, . . . ,ΩM〉. Crucially, a sequential estimation pro-
cess is used. The parameters Ωm are estimated separately by maximising the log-likelihood
only for model m, while the model weights are then estimated by maximising Equation 5
while keeping Ω fixed.

1 At this stage, it should be noted that a latent class model mixing various decision rules is just one example of a
wider set of structures that combine different models. A further possibility for example would be a model using differ-
ent generalised extreme value (GEV) nesting structures in different latent classes, somewhat similar in aims to the work
of Ishaq et al. (2013). Finally, a separate body of work looks at using different choice sets in different classes, in the con-
text of choice set generation work (see e.g. Swait and Ben-Akiva 1985; Ben-Akiva and Boccara 1995 and Gopinath 1995,
section 2.7).
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3. Simulated data analysis

Before testing model averaging on our stated preference datasets, we use simulated datasets
to look at the contrasting insights provided by different approaches when the true choice
process is known. We first describe how we created our 11 different datasets and what types
of heterogeneity each dataset contains. We then apply four different models correspond-
ing to the four different decision rules used to create the different datasets, 10 different
latent class models (4 with the same decision rule in both classes, and 6 with the different
combinations of the four decision rules) and finally model averaging.

3.1 Generation of simulated data

We use four different decision rules to generate the choices in our simulated datasets:

1. A random utility model (RUM), where the utility for hypothetical respondent n in
choice task t for alternative i is given by:

Unti = δi +
M

∑
m=1

(βm ·Xntim)+ εnti, (6)

where βm is the marginal utility coefficient associated with attribute m.

2. A regret minimisation model (RRM) based on the specification given by Chorus (2010),
thus the regret is calculated:

Rnti =−δi +
M

∑
m=1

∑
j 6=i

ln(1+ exp(βm · (Xnt jm−Xntim)))+ εnti, (7)

where the constants which are added to the regret are multiplied by −1 such that they
have similar impacts on choice probabilities (as they do in RUM) by being applied in
the same direction.

3. A pure regret minimisation model (P-RRM), as defined by van Cranenburgh et al.
(2015), such that regret is calculated:

Rnti =−δi +
M

∑
m=1

∑
j 6=i

max(0,βm · (Xnt jm−Xntim))+ εnti. (8)

4. A relative advantage maximisation model (RAM), as defined by Leong and Hensher
(2014), which is equivalent to a random utility model with the addition of the com-
parison of relative advantages (RA) of alternative i with each of the other alternatives,
meaning that the utility of the alternatives are now choice-set dependent:

Unti = δi +
M

∑
m=1

(βm ·Xntim)+∑
j 6=i

RAnti j + εnti, (9)
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where the relative advantage of an alternative i is calculated by comparing it against
all other alternatives. The sum of advantages Anti j is:

Anti j =
M

∑
m=1

ln(1+ exp(βm · (Xnt jm−Xntim))). (10)

With disadvantages Dnti j = Ant ji, the relative advantage is then estimated:

RAnti j =
Anti j

Anti j +Dnti j
. (11)

We use an efficient design to generate 5,000 mode choice scenarios, each with four possible
alternatives: car, air, rail and high-speed rail. These alternatives are described by (for
respondent n, alternative i in choice scenario t) travel cost (TCnti), travel time (T Tnti) and
access time (ATnti).

Thus, for the RUM model, the utility is specifically calculated:

Unti = δi +δFi · zF,n +βT T ·αT Ti ·T Tnti +βTC ·αIE,n ·TCnti +βAT ·ATnti + εnti, (12)

where δi and δFi are alternative specific constants (with the constant for car normalised
to zero), with δFi only applying when the dummy variable for female respondents, zF,n,
equals one (which is the case for half of the participants). We have three marginal utility
coefficients, βT T , βTC, βAT , for travel time, travel cost and access time, respectively. We
use car as the base for travel time sensitivity, and apply mode-specific multipliers for travel
time sensitivity through αT Ti . Finally, we incorporate an income effect, which is defined
as αIE,n = ( In

2500)
αI , where In is the income for individual n and αI is an income elasticity.

Analogous specifications are used to calculate the regret for alternatives under RRM and
P-RRM using Equations 7 and 8 respectively, and the utility under RAM with Equations
9-11.

For all decision rules, the assumption of type I extreme value errors for ε results in prob-
abilities of choosing each alternative being generated using the well known Multinomial
Logit (MNL) formula:

Pnti =
exp(Unti)

∑
4
j=1 exp(Unt j)

, (13)

with Unti being replaced by −Rnti for RRM and P-RRM. For each dataset, we then use a set
of uniform draws to select the ‘chosen’ alternatives in the 5,000 scenarios.

We use different sets of parameter values and decision rules to create datasets with and
without taste heterogeneity and decision rule heterogeneity. We use two sets of true param-
eter values for RUM and P-RRM, and one set of true parameter values for RRM and RAM,
with the parameter values given in Table 1. The first two datasets we create use the same
data generation process (DGP) for all individuals and thus assume that all decision-makers
use the same decision rule with the same coefficients to make their choices. The next two
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datasets are created such that there is taste heterogeneity, by using a random allocation
such that half of the decision-makers use one DGP, and the other half use a different DGP,
where both DGPs have the same decision rule but different parameter values. The next
three datasets instead only have decision rule heterogeneity, by using DGPs with similar
parameter values but different decision rules for the different individuals. The final four
datasets contain both decision rule and taste heterogeneity. The DGPs used and types of
heterogeneity included in each dataset are summarised in Table 2.

Table 1 : Coefficient values for the data generation processes, where the alternatives are
car (C), rail (R), air (A) and high-speed rail (H), together with the choice shares for each
mode. Note that δH = 0, δFH = 0 and αT TC = 1. Values are chosen for RUM1 and RUM2
such that they are very different. P-RRM1, P-RRM2, RRM1 and RAM1 have adjusted
β -coefficients in comparison to RUM1 and RUM2 such that they have approximately the
same scale. The other coefficients are unchanged.

Parameter RUM1 P-RRM1 RRM1 RAM1 RUM2 P-RRM2

δC -0.5000 -0.5000 -0.5000 -0.5000 1.0000 1.0000
δR -1.5000 -1.5000 -1.5000 -1.5000 -0.5000 -0.5000
δA -1.0000 -1.0000 -1.0000 -1.0000 1.0000 1.0000
δFC -0.5000 -0.5000 -0.5000 -0.5000 -0.2000 -0.2000
δFR 0.5000 0.5000 0.5000 0.5000 1.5000 1.5000
δFA 1.0000 1.0000 1.0000 1.0000 -0.5000 -0.5000
αI -0.5000 -0.5000 -0.5000 -0.5000 -0.3000 -0.3000
βT T -0.0040 -0.0020 -0.0020 -0.0080 -0.0050 -0.0025
βTC -0.0280 -0.0140 -0.0140 -0.0560 -0.0100 -0.0050
βAT -0.0080 -0.0040 -0.0040 -0.0160 -0.0120 -0.0060
αT TR 1.2500 1.2500 1.2500 1.2500 0.8000 0.8000
αT TA 2.0000 2.0000 2.0000 2.0000 1.7000 1.7000
αT TH 1.5000 1.5000 1.5000 1.5000 1.7000 1.7000

Share(Car) 53.06% 54.74% 54.64% 46.30% 43.64% 53.52%
Share(Rail) 9.54% 5.52% 7.80% 9.68% 6.22% 5.44%
Share(Air) 13.00% 10.58% 12.20% 16.84% 39.08% 26.34%
Share(HSR) 24.40% 29.16% 25.36% 27.18% 11.06% 14.70%

3.2 Results from simulated datasets

For each of the simulated datasets, we estimate 14 different models. The first four of these
are basic RUM, RRM, P-RRM and RAM models. The next 10 are latent class models with
two classes, using all possible combinations of models, i.e. RUM_RUM, RUM_P-RRM, etc.
This means that for each dataset, we have four models that test for taste heterogeneity alone
and six models that allow for taste and decision rule heterogeneity. As we have 11 different
datasets that include taste and/or decision rule heterogeneity, we aim to test the findings
obtained using simultaneous LC models and sequential LC models, i.e. model averaging,
and contrast these with the true DGP. The results of all models are given in Table 3. We
highlight the best-fitting base model for each DGP, together with base models that receive a
share from model averaging across these models. The table also details the best-fitting latent
class model and the gain achieved by averaging across the latent class models.
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Table 2 : Types of heterogeneity in each dataset.

Dataset Data Generation Process
Sources of heterogeneity
Taste Decision rule

1 RUM1 (100%) no no
2 P-RRM1 (100%) no no

3 RUM1 (50%) RUM2 (50%) yes no
4 P-RRM1 (50%) P-RRM2 (50%) yes no

5 RUM1 (50%) P-RRM1 (50%) no yes
6 RUM2 (50%) P-RRM2 (50%) no yes
7 RUM1 (25%) P-RRM1 (25%) RRM1 (25%) RAM1 (25%) no yes

8 RUM1 (50%) P-RRM2 (50%) yes yes
9 RUM2 (50%) P-RRM1 (50%) yes yes
10 RUM1 (50%) RUM2 (50%) P-RRM1 (25%) P-RRM2 (25%) yes yes
11 RUM2 (25%) P-RRM2 (25%) RRM1 (25%) RAM1 (25%) yes yes

We first look at the two datasets which come from a single model without heterogeneity (i.e.
datasets 1-2). We note that each time, the model using the correct decision rule outperforms
the other models as well as obtaining large shares from model averaging across the base
models. None of the LC structures can reject the single class model, with a maximum gain
of 15.94 units at a cost of 14 additional parameters, resulting in Likelihood Ratio Test p-
values of 0.64 and 0.32 respectively for datasets 1 and 2. Consequently we do not detail
results from model averaging across latent class models for these datasets given that these
models are rejected.

As a contrast, we observe substantial gains in model fit from moving to latent class models
for datasets 3 and 4, with highly significant likelihood ratio tests. In both cases, one model
(RUM_RUM and P-RRM_P-RRM, respectively) obtains a large share from model averaging
across the latent class models. This gives a good indication of the underlying DGP, which
are correctly identified in both of these cases.

For datasets 5-7, which are generated with decision-rule heterogeneity alone, we observe
more similar log-likelihoods for the base models, with the shares from model averaging
indicating the DGP. For the first two cases, the power of model averaging is particularly
highlighted given that RRM is the best performing base model, but receives none of the
model averaging share. Unsurprisingly, the best performing latent class model for both
datasets are the RUM_P-RRM models, but these models are again rejected as was the case
for datasets 1 and 2, as the improvement in model fit is not substantial given the increase
in model parameters and consequently we only have weak evidence from the likelihood
ratio tests. For dataset 7, it is notable that model averaging gives a share to all base mod-
els. Though the gain from model averaging across base models is less than the gain from
moving to latent class models (as has to be the case), these results indicate that decision rule
heterogeneity alone is present in datasets 5-7. This is indicated by the fact that averaging
over the base models achieves at least 20% of the gain that is achieved by a latent class
model. As a contrast, this gain is no higher than 3% when the dataset additionally includes
taste heterogeneity. Whilst the rejection of the latent class models could be inferred as



EJTIR 21(3), 2021, pp.38-63
Hancock and Hess
What is really uncovered by mixing different model structures: contrasts between latent class and model averaging.

48

Table 3 : Results from RUM, RRM, P-RRM, RAM and latent class models for each of the 11
simulated datasets, together with the results from model averaging.

DGP Type of heterogeneity None Taste Decision-rule (DR)

Dataset 1 2 3 4 5 6

Data Generation Process (DGP) MNL1 (100%) PRRM1 (100%)
MNL1 (50%) PRRM1 (50%) MNL1 (50%) MNL2 (50%)

MNL2 (50%) PRRM2 (50%) PRRM1 (50%) PRRM2 (50%)

Base MNL -4,816.02 -4,403.37 -5,293.13 -4,923.14 -4,556.99 -5,112.98
models RRM -4,841.62 -4,360.38 -5,304.37 -4,910.58 -4,551.88 -5,112.19
LL(0) = PRRM -4,909.46 -4,340.02 -5,346.80 -4,903.64 -4,570.67 -5,116.47

-6,931.47 RAM -5,025.86 -4,468.43 -5,376.25 -5,001.32 -4,764.95 -5,186.00

Model Averaging (base models) LL -4,816.02 -4,339.50 -5,292.99 -4,901.05 -4,543.79 -5,107.61
Model averaging LL - best LL (Base models) 0.00 0.52 0.15 2.59 8.09 4.58

MNL 100.00% 0.00% 96.15% 14.16% 57.66% 55.58%
Base models RRM 0.00% 3.96% 0.00% 13.28% 0.00% 0.00%

shares PRRM 0.00% 91.98% 0.00% 70.33% 39.37% 44.42%
RAM 0.00% 4.06% 3.85% 2.24% 2.97% 0.00%

Best LL (latent class model) MNL-MNL MNL-PRRM MNL-MNL PRRM-PRRM MNL-PRRM MNL-PRRM
Log-likelihood -4,804.49 -4,324.07 -5,082.81 -4,758.47 -4,529.72 -5,092.82

Best LL (LC models) - best LL (base model) 11.53 15.94 210.32 145.17 22.15 19.37
Likelihood Ratio Test (p-value) 0.6438 0.3168 0.0000 0.0000 0.0755 0.1513

Model averaging LL (over LC models)
n/a

-5,082.18 -4,756.46
n/aModel averaging LL - best LL (LC models) 0.64 2.01

Best LL (LC model) model averaging share 76.55% 82.38%

DGP Type of heterogeneity DR Taste & DR

Dataset 7 8 9 10 11

Data Generation Process (DGP)

MNL1 (25%)
MNL1 (50%) MNL2 (50%)

MNL1 (25%) MNL2 (25%)
PRRM1 (25%) MNL2 (25%) PRRM2 (25%)
RRM1 (25%)

PRRM2 (50%) PRRM1 (50%)
PRRM1 (25%) RRM1 (25%)

RAM1 (25%) PRRM2 (25%) RAM1 (25%)

Base MNL -4,671.91 -5,114.66 -5,224.66 -5,118.18 -5,223.75
models RRM -4,667.38 -5,114.63 -5,226.79 -5,124.55 -5,227.62
LL(0) = PRRM -4,700.63 -5,136.53 -5,246.89 -5,156.06 -5,257.52

-6,931.47 RAM -4,711.57 -5,229.82 -5,287.68 -5,196.98 -5,281.99

Model Averaging (base models) LL -4,657.39 -5,112.00 -5,222.46 -5,117.78 -5,222.17
Model averaging LL - best LL (Base models) 9.99 2.63 2.21 0.40 1.58

MNL 24.13% 71.76% 76.58% 90.95% 72.55%
Base models RRM 34.79% 6.45% 0.00% 0.00% 7.80%

shares PRRM 14.62% 21.79% 22.27% 9.05% 8.92%
RAM 26.46% 0.00% 1.15% 0.00% 10.73%

Best LL (latent class model) RRM-RAM MNL-PRRM MNL-PRRM RRM-RRM RRM-RRM
Log-likelihood -4,644.55 -5,017.54 -4,927.19 -4,936.38 -5,063.79

Best LL (LC models) - best LL (base model) 22.83 97.09 297.48 181.80 159.95
Likelihood Ratio Test (p-value) 0.0630 0.0000 0.0000 0.0000 0.0000

Model averaging LL (over LC models)
n/a

-5,016.83 -4,925.71 -4,933.23 -5,054.26
Model averaging LL - best LL (LC models) 0.71 1.48 3.15 9.53

Best LL (LC model) model averaging share 72.98% 76.46% 21.27% 29.61%
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‘failing to uncover’ the DGP, it actually points to the fact that the parameter values across
decision-rules are similar enough that taste heterogeneity does not exist.

Finally, for the datasets created with both types of heterogeneity (where the models of differ-
ent types also use substantially different relative taste coefficients), we observe substantial
improvements in model fit by moving to latent class models, as expected. Model averaging
across these latent class models then tells us if the best-fitting latent class model is the DGP
for the dataset, with RUM_P-RRM obtaining 73% and 76% of the shares for datasets 8 and 9
respectively, but RRM_RRM only obtaining 21% and 30% for datasets 10 and 11. These latter
cases imply that there is more than two processes in the underlying DGP for these datasets.

4. Analysis on SP data

This section presents our work on two typical SP datasets. We first give an overview of the
data before looking separately at the case of attribute non-attendance (cf. Section 4.2) and
decision rule heterogeneity (cf. Section 4.3).

4.1 Data

Our main analysis relies on two SP datasets. The first is from Hess and Stathopoulos (2013)
and the second is developed by Swärdh and Algers (2009), with descriptions also in Beck
and Hess (2016).

SP dataset 1

For the first dataset, public transport commuters living in the UK each make ten choices
between three routes. A total of 368 participants completed the survey resulting in 3,680
choices. Each choice task involves an invariant reference trip and two hypothetical alterna-
tives (where the invariant trip is chosen 35.19% of the time and the new alternatives have
shares of 34.27% and 30.54%, respectively). The invariant trip for each individual is based on
averaging trip attributes across 10 regular trips corresponding to a week of commuting, with
the attributes of the hypothetical alternatives being pivoted around those of the invariant
trip. These choice tasks were generated with a D-efficient experimental design using NGene.
A total of 60 choice scenarios were blocked into groups of 10. Further details for the dataset
are given by Hess and Stathopoulos (2013). Each alternative is described by travel time (in
minutes), fare (in £), rate of crowded trips, rate of delays (both out of 10 trips), the average
length of delays (across delayed trips) and the presence of a delay information service (either
not available, available at a small fixed cost, or free). This dataset has previously been used
for decision rule heterogeneity (Hess and Stathopoulos, 2013) as well as for ANA work (Hess
et al., 2013b), making it an ideal case study for the present paper.

SP dataset 2

The second dataset used in this work involves decision-makers completing two distinct sets
of choice tasks based on an individual’s willingness to accept longer commutes for better
salaries (see Beck and Hess, 2016, for a detailed description of the survey). A sample of
1,179 households (with both partners in each household, resulting in 2,358 individuals)
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completed 4 tasks involving only attributes affecting themselves, and 4 or 5 tasks with
attributes impacting both members of the household. This resulted in a total of 20,041
choice observations. All choice tasks included trade-offs between the individual’s current
travel time and salary or an increased salary (of 500 or 1000 Swedish Krona (SEK) in net
wage per month) at a cost of an increase in one-way travel time (of either 10 or 25 minutes).
Similar adjustments were also made to the salary and travel time of the partner in choice
tasks also affecting the partner. All choice tasks included a status quo alternative, a new
location and an ‘I am indifferent’ option. This dataset is also well suited to for exploring
different sources of heterogeneity. Whilst it has previously been used to demonstrate that
random regret minimisation is more suited than random utility models at capturing choice
indifference Hess et al. (2014), 79% of individuals never choose the indifference alternative.
This could result in the presence of decision rule heterogeneity as there is no reason to
assume that RRM models will best fit these individuals also. Furthermore, there is scope
for attribute non-attendance as some individuals may focus on travel time or salary only or
alternatively may consider attributes affecting themselves but not their partners.

4.2 Attribute non-attendance work

We first look at the case of ANA, where we adopt a specification in line with Hess et al.
(2013b).

Specification

We start by estimating a simple RUM model. For SP-1, we use a logarithmic transform
on the fare attribute given earlier evidence of strong non-linearity. The model uses five
marginal utility parameters for the continuous attributes, two parameters for the dummy
coded delay information system, and two alternative specific constants (ASC). For SP-2, the
model uses different sets of parameters for the choice tasks involving attributes impacting
just the decision-maker and those with attributes also impacting the partner. This results in
six marginal utility parameters and four alternative specific constants. The model follows
Hess et al. (2014) in setting the utility for the indifference alternative to a constant.

We next move to the latent class model for attribute non-attendance. We use models with
2K classes, with all combinations of attendance and non-attendance for the K parameters.
The probability for class s is given by πs, with 0 ≤ πs ≤ 1 and ∑

S
s=1 πs = 1. Rather than

imposing constraints in estimation, an easier approach is to use πs =
eδs

∑
S
m=1 eδm

, with one δm,

i.e. the parameter used in the class allocation probabilities, being fixed to zero. Nevertheless,
this specification still involves estimating 2K − 1 separate δ terms, of which many will be
very negative, equating to very small class probabilities. In the context of the applications
presented in this paper, we make the simplifying assumption that attendance versus non-
attendance is independent across attributes (with probabilities that vary across attributes
but are constant across individuals), by instead setting

πs =
K

∏
k=1

(
Λs,k

(
1−PANA,k

)
+
(
1−Λs,k

)
PANA,k

)
, (14)
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where Λs,k gives the entry in Λ relating to attribute k in class s, where this is 1 only
if attribute k is attended to in class s. With this specification, we only need to estimate
K separate δ elements (as PANA,k is the probability of non-attendance to attribute k, thus

PANA,k =
eδk

eδk+1
), as opposed to 2K − 1, leading to significant reductions in the number of

parameters.

We finally look at the estimation of our model averaging structure. For this, we first estimate
128 and 64 individual models for the two datasets respectively, corresponding to all possible
combinations of attribute attendance and non-attendance, i.e. for SP-1, going from a model
with all 9 model parameters (all 7 attributes are attended to) to one with the two alternative
specific constants only (none of the attributes attended to). We then estimate the model
averaging structure, meaning that we keep the parameters for each of the 128/64 models at
the estimates from the individual model estimation process and only estimate the weights
for model averaging. We again use multiplicative class allocation probabilities, as in the LC
model.

Results for SP-1

The results for the simple RUM model are shown in Table 4 where all estimates are of the
expected sign.

Table 4 : RUM results for SP-1.

LL(0) -4,042.89
LL(final) -3,366.95
ρ2 0.1672
adj. ρ2 0.1650

Estimate Rob.t.ratio(0)

ASC1 0.3841 5.76
ASC2 0.1608 3.26
βtravel time -0.0467 -9.47
βlog-fare -5.9726 -18.89
βcrowding -0.2198 -8.51
βrate of delays -0.2411 -9.82
βaverage delay -0.0421 -5.35
βinfo system charged -0.0833 -1.04
βinfo system free 0.3370 5.06

The results for the CLC model are shown in Table 5. We see an improvement in log-
likelihood by 308.16 units for 7 additional parameters. This is highly significant and in
line with previous findings when using such a CLC model for ANA. We also see that the
magnitudes of the marginal utility parameters, which now only apply in the attendance
classes, have increased substantially compared to the base model. This is what we expect
as the RUM model has to find a single value to represent the importance of the attribute
to all decision-makers, which is between 0 (for the non-attenders) and the observed esti-
mate (for the attenders) from the confirmatory latent class model. The exception is for
βinfo system charged, which has an insignificant negative coefficient in the RUM model, but
becomes significantly positive under the new model. This is a result of the attribute having
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a very high rate of non-attendance (96%), which causes it to be insignificant at the group
level. The implied rates of non-attendance of all attributes are in fact unrealistically high,
exceeding 50% for all attributes except fare.

Table 5 : Confirmatory latent class model for attribute non-attendance for SP-1, with
model estimates including implied rates of attribute non-attendance (ANA).

LL(0) -4,042.89
LL(final) -3,058.79
ρ2 0.2434
adj. ρ2 0.2395

Estimate Rob.t.ratio(0)

ASC1 0.8416 10.32
ASC2 0.3290 4.23
βtravel time -0.1841 -5.64
βlog-fare -14.6889 -14.37
βcrowding -1.1524 -7.16
βrate of delays -1.1307 -5.62
βaverage delay -0.3966 -4.85
βinfo system charged 2.3264 3.37
βinfo system free 2.0433 7.23
δANA,travel time 0.3232 1.11
δANA,log-fare -0.5142 -3.43
δANA,crowding 0.7767 3.30
δANA,rate of delays 0.7363 2.43
δANA,average delay 1.1917 4.02
δANA,info system charged 3.1776 3.82
δANA,info system free 0.9874 3.61

Implied rate of ANA
Estimate Rob.t.ratio(0)

travel time 0.5801 8.18
fare 0.3742 10.65
crowding 0.6850 13.49
rate of delays 0.6762 10.21
average delay 0.7670 14.48
info system charged 0.9600 30.05
info system free 0.7286 13.47

For model averaging, we initially estimated seven class allocation weights as in the LC model
but find that for the first four attributes, the constants go towards −∞, suggesting a zero
probability of ANA. The results of the model averaging work are shown in Table 6. We see
that this model now only offers a marginally better log-likelihood than the RUM model in
Table 4, much in contrast with the LC model in Table 5. No formal statistical test is used
here as model averaging is not a process of simultaneously estimating all the parameters for
all the models on a single dataset. In addition to the earlier finding of zero weight for any
classes that imply non-attendance of either time, fare, crowding or the rate of delays, we
also see low rates for the average delay and the free information system, with a higher rate
for the charged system. A number of other statistics are valuable. First, we can rank the
128 models by log-likelihood and we note that the 8 models that obtain the best individual
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Table 6 : Model averaging (MA) for ANA work for SP-1.

LL(final) = -3,363.28, LL(0) = -4,042.89 Implied rate of ANA

Estimate Rob.t.ratio(0) Estimate Rob.t.ratio(0)

δANA,average delay -1.9099 -1.95 average delay 0.1290 1.17
δANA,ch inf sys 0.0844 0.05 info system charged 0.5211 1.22
δANA,free inf sys -1.1531 -2.04 info system free 0.2399 2.33

Information for 8 retained models.

LL -3,367.75 -3,366.95 -3,400.98 -3,390.17 -3,391.85 -3,391.62 -3,424.48 -3,416.22
ranking out of 128 candidates 2 1 6 3 5 4 8 7
providing best fit for N respondents 12 17 14 14 9 8 12 9
MA share 34.50% 31.71% 10.89% 10.01% 5.11% 4.70% 1.61% 1.48%

attribute included

travel time YES YES YES YES YES YES YES YES
fare YES YES YES YES YES YES YES YES
crowding YES YES YES YES YES YES YES YES
rate of delays YES YES YES YES YES YES YES YES
average delay YES YES YES YES NO NO NO NO
info system charged NO YES NO YES NO YES NO YES
info system free YES YES NO NO YES YES NO NO

est. (rob. t-rat)

ASC1 0.41 (6.46) 0.38 (5.76) 0.40 (6.24) 0.32 (4.77) 0.39 (6.15) 0.38 (5.61) 0.38 (5.91) 0.31 (4.61)
ASC2 0.16 (3.29) 0.16 (3.26) 0.16 (3.29) 0.16 (3.17) 0.18 (3.59) 0.18 (3.58) 0.17 (3.46) 0.17 (3.41)
βtravel time -0.05 (-9.48) -0.05 (-9.47) -0.05 (-9.73) -0.05 (-9.63) -0.05 (-9.35) -0.05 (-9.34) -0.05 (-9.59) -0.05 (-9.49)
βlog-fare -5.95 (-18.86) -5.97 (-18.89) -5.77 (-18.19) -5.90 (-18.62) -5.87 (-18.81) -5.88 (-18.81) -5.68 (-18.12) -5.80 (-18.51)
βcrowding -0.22 (-8.50) -0.22 (-8.51) -0.22 (-8.59) -0.22 (-8.61) -0.22 (-8.46) -0.22 (-8.46) -0.22 (-8.55) -0.22 (-8.56)
βrate of delays -0.24 (-9.76) -0.24 (-9.82) -0.24 (-9.82) -0.24 (-9.95) -0.27 (-10.94) -0.27 (-10.98) -0.26 (-11.00) -0.27 (-11.17)
βaverage delay -0.04 (-5.32) -0.04 (-5.35) -0.04 (-5.29) -0.04 (-5.51) 0 0 0 0
βinfo system charged 0 -0.08 (-1.04) 0 -0.27 (-3.67) 0 -0.04 (-0.57) 0 -0.24 (-3.24)
βinfo system free 0.36 (5.96) 0.34 (5.06) 0 0 0.36 (5.91) 0.35 (5.22) 0 0
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log-likelihoods are also the only 8 models that contribute to the model average. The two
best fitting models also contribute the most to the model averaging, though in reverse order
(models with rankings 2 and 1). Finally, for each individual person in the data, we can see
which of the 128 models best explains their choices. Doing this, we see that out of the 368
individuals in the data, only 95 have their choices explained the best way by one of these 8
models, where a remarkable 104 out of the 128 models have at least one individual where
they are the best performing model.

Overall, the findings from this analysis are much in contrast with those from the confirma-
tory latent class model in that very little evidence of ANA is found. In addition, there is very
little variation in the remaining parameters across classes. Of course, the counter-argument
could be that the model averaging approach cannot retrieve ANA as it is based on individ-
ual models that each apply a homogeneous approach to all individuals. However, some
reassurance can be obtained from the fact that the model averaging results are in line with
the findings by Hess et al. (2013b) which find evidence of ANA only for the average delay
attribute and for the delay information attribute after allowing for random heterogeneity
in their models. It is thus doubtful whether additional insights would be obtained with
more flexibility for the individual models, such as by including random heterogeneity. A
possible step in that direction would be to estimate one latent class model for each of the
128 candidates, i.e. allowing for heterogeneity within a model that assumes a given ANA
strategy.

Results for SP-2

The results for the simple RUM model are shown in Table 7 where all estimates are of the
expected sign. Decision-makers give more weight to their own salary than their partner’s
salary but the reverse is true for travel time.

Table 7 : RUM results for SP-2.

LL(0) -22,017.29
LL(final) -14,153.13
ρ2 0.3572
adj. ρ2 0.3567

Estimate Rob.t.ratio(0)

First ASCbase 0.5039 10.09
set of ASCindifference -2.904 -11.96
choice βown-travel-time -0.0335 -14.00
tasks βown-salary 0.0136 2.38

ASCbase 0.8878 14.63
Second ASCindifference -1.8309 -5.44
set of βown-travel-time -0.0129 -5.93
choice βown-salary 0.0178 3.21
tasks βpartner-travel-time -0.0145 -6.88

βpartner-salary 0.0118 1.95

We next consider a confirmatory latent class model, with the results given in Table 8. We
again see a substantial improvement in model fit, this time of 1,696 units. The magnitude of
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the marginal utility parameters increase in comparison to the base model, with a decision-
maker’s own salary in particular becoming substantially more important than the partner’s
salary. As a contrast to the results of SP-1, the implied rates of attribute non-attendance
appear more reasonable, with salaries more often ignored than travel time.

Table 8 : Confirmatory latent class model for attribute non-attendance for SP-2, with
model estimates including implied rates of attribute non-attendance.

LL(0) -22,017.29
LL(final) -12,457.15
ρ2 0.4342
adj. ρ2 0.4335

Estimate Rob.t.ratio(0)

ASCbase -0.2674 -3.72
First ASCindifference -3.9904 -14.43
set of βown-travel-time -0.1080 -21.27
choice βown-salary 0.4152 8.02
tasks δANA,own-travel-time -2.8640 -20.23

δANA,own-salary -1.2640 -14.96

ASCbase -1.3283 -8.02
ASCindifference -5.1077 -10.18
βown-travel-time -0.1452 -25.18

Second βown-salary 1.6070 7.68
set of βpartner-travel-time -0.1823 -26.50
choice βpartner-salary 0.2019 12.81
tasks δANA,own-travel-time -1.9540 -15.56

δANA,own-salary -1.4494 -18.55
δANA,partner-travel-time -1.7783 -18.13
δANA,partner-salary -0.9168 -5.96

Implied rate of ANA
Estimate Rob.t.ratio(0)

first own-travel-time 0.0540 7.47
first own-salary 0.2203 15.18
second own-travel-time 0.1241 9.09
second own-salary 0.1901 15.80
partner-travel-time 0.1445 11.91
partner-salary 0.2856 9.10

For model averaging, we estimate six class allocation weights as in the LC model. We find
that the constants for the decision-maker’s own travel time go towards −∞, suggesting a zero
probability of ANA. The results of model averaging are displayed in Table 9. 15 different
models contribute to the model average, with the four best performing models also being
the four with the largest shares in model averaging. 61 out of 64 of the models are the
best performing model for at least one individual. As was the case for SP-1, we observe a
substantial reduction in the improvement offered over the base model, with a gain of just 12
units instead of 1,696. However, as a contrast, the implied rates of attribute non-attendance
are more in line with those of the CLC model, with the rates for attributes impacting the
partner particularly similar.
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Table 9 : Model averaging for ANA work for SP-2.

LL(final) = -14,140.92, LL(0) = -22,017.92 Implied rate of ANA

Estimate Rob.t.ratio(0) Estimate Rob.t.ratio(0)
δNA,first-own-salary -1.0459 -1.44 first-own-salary 0.2600 1.85
δNA,second-own-salary -1.0273 -1.75 second own-salary 0.2636 2.32
δNA,partner-travel-time -1.692 -2.81 partner-travel-time 0.1555 1.97
δNA,partner-salary -0.7669 -1.21 partner-salary 0.3172 2.30

Information for top 4 retained models

individual LL -14,153.13 -14,160.26 -14,446.75 -14,474.33
ranking out of 64 models 1 2 4 3
providing best fit for N respondents 115 183 30 11
MA share 31.42% 14.59% 11.25% 11.04%

attribute included

first own-travel-time YES YES YES YES
first own-salary YES YES YES NO
second own-travel-time YES YES YES YES
second own-salary YES YES NO YES
partner-travel-time YES YES YES YES
partner-salary YES NO YES YES

est. (rob. t-rat)

ASCbase 0.504 (10.09) 0.504 (10.09) 0.504 (10.09) 0.493 (9.81)
ASCindifference -2.904 (-11.96) 0.884 (14.51) 0.879 (14.52) 0.888 (14.63)
βown-travel-time 0.034 (-14.00) -0.034 (-14.00) -0.034 (-14.00) -0.034 (-13.83)
βown-salary 0.014 (2.38) 0.014 (2.39) 0.014 (2.39) 0

ASCbase 0.888 (14.63) -2.904 (-11.95) -2.904 (-11.95) -3.319 (-18.27)
ASCindifference -1.831 (-5.44) -2.118 (-7.64) -2.271 (-7.75) -1.831 (-5.44)
βown-travel-time -0.013 (-5.93) -0.013 (-5.90) -0.013 (-5.79) -0.013 (-5.93)
βown-salary 0.018 (3.21) 0.02 (3.41) 0 0.018 (3.21)
βpartner-travel-time -0.015 (-6.88) -0.014 (-6.72) -0.015 (-7.01) -0.015 (-6.88)
βpartner-salary 0.012 (1.95) 0 0.015 (2.33) 0.012 (1.95)

4.3 Decision rule heterogeneity work

We next turn to decision rule heterogeneity, which has been the key interest in applying
latent class structures for process heterogeneity in recent years. We use the same four
decision rules (RUM, RRM, P-RRM and RAM) that we used in our simulated datasets.

Results for SP-1

For SP-1, we first apply the four different models individually, obtaining the results given
in Table 10. We see that RAM obtains the best log-likelihood and Bayesian Information
Criterion (BIC) ahead of RUM, while the performance of the two regret-based models is
comparatively worse. As a first step, we look at model averaging across these four individual
models with different decision rules, where the resulting shares and fit are shown in Table
10. We see that the model average leads to no improvement in model fit, as RAM is given
100% of the share.
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Table 10 : Results from different individual models applied to the SP-1 dataset.

Model Model Type Log-likelihood BIC MA Share

1 RUM -3,366.95 6,808 0.00%
2 RRM -3,371.01 6,816 0.00%
3 P-RRM -3,407.72 6,889 0.00%
4 RAM -3,361.29 6,796 100.00%

Model averaging -3,361.29

In practice, the estimation of a latent class model with four separate classes all using individ-
ual decision rules is computationally challenging and most applications rely on combining
just two different rules. We therefore look at the estimation of 10 different latent class
structures with two classes each, picking all combinations of two model structures with
replacement, thus also allowing for four models where the two classes are of the same type,
i.e. looking for taste heterogeneity alone. Table 11 gives the log-likelihoods of these models.
For all 10 models, a likelihood ratio test against the corresponding model (in the case of
single decision rule) or two corresponding models (in the case of two decision rules) clearly
rejects the base model(s). This provides evidence of taste heterogeneity (in the case of single
structure models) and would typically be seen as evidence of decision rule heterogeneity in
the case of the models with two different structures in the two classes.

Table 11 : Results from latent class models applied to the SP-1 dataset.

Model version Class 1 Class 2 Log-likelihood BIC MA Share

1 RUM RUM -3,118.28 6,393 0.0%
2 RUM RRM -3,107.12 6,370 4.4%
3 RUM P-RRM -3,115.52 6,387 0.0%
4 RUM RAM -3,117.41 6,391 0.0%
5 RRM RRM -3,111.32 6,379 0.0%
6 RRM P-RRM -3,136.37 6,429 0.0%
7 RRM RAM -3,106.33 6,369 27.1%
8 P-RRM P-RRM -3,146.02 6,448 0.0%
9 P-RRM RAM -3,114.72 6,385 0.0%
10 RAM RAM -3,105.15 6,366 59.2%

Best LL (LC models) - best LL (base model) 256.14

Model averaging -3,100.72

Gain from model averaging 4.43

Most existing applications compare a model combining multiple different decision rules to
a set of single class models using the individual rules. This comparison is of course likely
to be biased in the presence of taste heterogeneity. Crucially, the improvements to be made
from combining different structures depend on their individual performance. For example,
we see that for RAM, which is the best performing individual model in Table 10, combining
the model with a different structure does not reach as high a log-likelihood as a structure
with two separate RAM classes. On the other hand, for those models that perform less
well individually, combining them with a different structure gives a better log-likelihood
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than a model with two classes using the same structure. This already suggests that the
results from the latent class structure point more towards taste heterogeneity than decision
rule heterogeneity. In fact, when looking at pairs of decision rules, we see only two cases
in favour of decision rule heterogeneity, i.e. where a model combining two decision rules
outperforms the two LC models that use the same model type in both classes. The RUM_RRM
model outperforms RRM_RRM by 4.20 log-likelihood units and outperforms RUM_RUM by
11.16 units. Additionally, RUM_P-RRM has a better log-likelihood than either RUM_RUM or
P-RRM_P-RRM. Further evidence is given in the model averaging results in Table 11, with
59% of the share going to a single model. In comparison to the outputs from our simulated
datasets, these results are most similar to the cases with taste heterogeneity alone. The gain
from averaging across these latent class models is however 4.43 units, which is slightly more
than observed for datasets with taste heterogeneity alone. Overall, our findings highlight
the importance of within-model taste heterogeneity.

To examine this further, we explore the most common example of decision rule heterogene-
ity (RUM-RRM) in more detail by also considering the outputs for the parameter estimates,
in comparison to a model average performed on RUM and RRM. The results for this are
shown in Table 12.

Table 12 : A detailed example of model averaging compared to a simultaneous latent class
approach using RUM and RRM.

Latent Class - 1 model Model averaging - 3 models
19 pars, estimated simultaneously 2*9 pars, then 1 for MA
Class 1:RUM Class 2:RRM Class 1: RUM Class 2: RRM

Class LL: -3,643.18 -4,503.18 -3,366.95 -3,371.01
Log-likelihood -3,107.12 -3,366.94

ASC1 0.63 (6.44) 0.05 (0.39) 0.38 (5.76) 0.26 (4.03)
ASC2 0.24 (2.91) 0.20 (1.26) 0.16 (3.26) 0.16 (3.33)
βtravel time -0.05 (-6.85) -0.06 (-6.85) -0.05 (-9.47) -0.03 (-9.57)
βlog-fare -3.22 (-7.17) -11.61 (-7.65) -5.97 (-18.89) -4.08 (-17.70)
βcrowding -0.31 (-7.14) -0.15 (-2.70) -0.22 (-8.51) -0.14 (-8.53)
βrate of delays -0.39 (-4.20) -0.01 (-0.44) -0.24 (-9.82) -0.16 (-9.93)
βaverage delay -0.06 (-8.79) -0.12 (-3.04) -0.04 (-5.35) -0.03 (-5.16)
βinfo system charged -0.09 (-0.79) 0.00 (-1.13) -0.08 (-1.04) -0.05 (-0.86)
βinfo system free 0.54 (5.97) 0.55 (0.55) 0.33 (5.06) 0.22 (4.97)

πm 60.10% (2.11) 39.90% 93.02% (2.77) 6.98%

Table 12 gives model fit as well as estimates for the above parameters for both a latent class
model and a model averaging approach. The model averaging approach separately runs
RUM and RRM models before then estimating a class allocation parameter individually.
Crucially, the model averaging approach does not result in a significant improvement over
a RUM model on its own, with an improvement of just 0.01 log-likelihood units. As a
contrast, the latent class approach results in a vast improvement in model fit (260 units).
At face value, this would again suggest decision rule heterogeneity, although the fit is not
much better than for the RUM-RUM or RRM-RRM models. Most significantly, it appears
that the fare parameter estimates (highlighted in red) are very different between the two
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classes. In contrast with the model averaging results, and given the poor class-specific
model fit for the RRM class (compared to the RRM-RRM model), we believe that this finding
shows that a substantial share of the improvements obtained by the RUM-RRM model are
due to heterogeneity in the cost sensitivity rather than heterogeneity in the decision rules.
This means that the classes individually have a very poor fit (as they cannot explain all
individuals) but when combined into a latent class approach, the result is a model with
far superior model fit. Together with the poor improvement from model averaging, these
results suggest that most of the model improvement for this dataset is due to taste rather
than decision rule heterogeneity.

Results for SP-2

For SP-2, we first apply the four different models individually, obtaining the results given
in Table 13. In line with the results of Hess et al. (2014), we observe that RRM gives the best
model fit. P-RRM has slightly worse fit but both of these models have substantially better
model fit than RUM and RAM, both of which appear to be unable to capture the presence of
an indifference alternative. However, despite the vastly inferior model fit, RUM still obtains
a 5% share from model averaging. Additionally, the shares are not necessarily proportional
to the model fit of the individual model, as P-RRM obtains a larger share than RRM, despite
having poorer overall individual log-likelihood. This again shows that some models can
work well for some decision-makers even if they obtain a lower overall fit to the sample.
Overall, the model average results in an improvement of 117 units over the RRM model,
implying that there is likely decision rule heterogeneity in this case.

Table 13 : Results from different individual models applied to the SP-2 dataset.

Model Model Type Log-likelihood BIC MA Share

1 RUM -14,153.13 28,388 5.42%
2 RRM -12,426.76 24,936 42.12%
3 P-RRM -12,438.01 24,958 52.46%
4 RAM -14,423.92 28,930 0.00%

Model averaging -12,309.80

Gain from model averaging 116.96

We next look at the estimation of the 10 different latent class models with two classes each.
Table 14 gives the log-likelihood of these models.

In all cases, we observe a substantial improvement in log-likelihood, with all 10 models
having a better BIC than that of the best individual model. Overall, the best latent class
model is the P-RRM_P-RRM model, which records a likelihood that is 1,706 units better than
the RRM model from Table 13. Notably, the best performing latent class model for SP-1
(RAM-RAM) is the worst performing model for SP-2. In this case, a lack of decision rule
heterogeneity is implied by the fact that not a single model combining two decision rules
outperforms the two LC models that use the same model type in both classes. However,
averaging across all 10 of the latent class models results in a 410 unit improvement in
model fit. With the best latent class model only receiving 33% of the model averaging share,
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Table 14 : Results from latent class models applied to the SP-2 dataset.

Model version Class 1 Class 2 Log-likelihood BIC MA Share

1 RUM RUM -12,093.16 24,359 2.7%
2 RUM RRM -11,249.03 22,670 0.0%
3 RUM P-RRM -11,281.73 22,736 32.5%
4 RUM RAM -12,098.96 24,370 0.0%
5 RRM RRM -10,937.65 22,048 4.5%
6 RRM P-RRM -10,864.17 21,901 4.1%
7 RRM RAM -11,440.91 23,054 3.6%
8 P-RRM P-RRM -10,720.51 21,613 30.3%
9 P-RRM RAM -11,082.22 22,337 22.3%
10 RAM RAM -12,139.71 24,452 0.0%

Best LL (LC models) - best LL (base model) 1,706.25

Model averaging -10,310.15

Gain from model averaging 410.36

the results for this dataset are in fact more in line with cases 10 and 11 from our simulated
data analysis, implying that there is both taste and decision rule heterogeneity and more
than two different models in the underlying DGP. Overall, these results are much in contrast
with those of SP-1, as the gains obtained by model averaging implies evidence of decision
rule heterogeneity.

5. Conclusions

In this paper, we revisit the use of latent class models to capture heterogeneity across
decision-makers in behavioural processes such as attribute non-attendance and decision rule
heterogeneity. These approaches have been very popular in recent years and have often been
shown to produce significant gains in fit over simpler models. We argue that many such
findings may be due to an unfair comparison with models not allowing for any heterogeneity
and that the findings may in fact be driven by heterogeneity in the sensitivities to individual
attributes rather than the presence of other phenomena. We have contrasted the findings
obtained from such latent class models with those obtained using model averaging which
combines the evidence from a number of separately estimated models. This latter approach
of course leads to inferior model fit compared to a simultaneous latent class model as model
averaging is based on combining different sample level models, i.e. using parameters that
are appropriate at the sample level, but our findings provide some evidence that suggests
that these bigger improvements may indeed be in part due to effects other than those that
analysts seek to uncover. This is especially the case when showing that equivalent (or near
equivalent) gains in model fit can be obtained from LC models that use the same structure in
each class, thus only allowing for taste heterogeneity. In particular, there is little evidence
of attribute non-attendance in either of our SP datasets. Whilst one dataset shows clear
evidence of decision rule heterogeneity, the other does not.

In practice, an analyst should of course attempt to simultaneously allow for all different
types of heterogeneity whilst remaining aware of potential confounding. This would how-
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ever require the use of latent class structures with many different classes, which quickly be-
come computationally and empirically infeasible. While we do not suggest that researchers
abandon the use of latent class structures to investigate heterogeneity in behavioural pro-
cesses, we urge for some caution in interpretation and suggest that model averaging can
provide a useful tool for checking the likely validity of their insights. In particular, given
that model averaging over similar models can result in a substantial improvement in model
fit (as demonstrated by our second case study and by Hancock et al. 2020), a small improve-
ment suggests that taste heterogeneity may be the driving factor behind a large gain (if
observed) when moving to a latent class model.

As a closing comment, our results demonstrate that model averaging never does as well as
fully flexible latent class models, even in the case showing clear decision rule heterogeneity.
This suggests that there is more scope for heterogeneity in parameters across individuals
conditional on a specific model structure rather than heterogeneity across individuals in the
model structure itself. In many ways, this is not surprising given that datasets, especially
from stated choice surveys, are relatively homogeneous in the structure of the choice sets
and explanatory variables. This means that it is possibly unlikely that there would be
substantial variation in how different individuals make choices in these scenarios, and
consequently the models that explain these choices best are more likely to be dataset-specific
rather than person-specific. More work is of course required, including testing using further
simulated datasets as well as revealed preference datasets. This is especially important with
a view to looking into the ability of model averaging to uncover heterogeneity of the type
analysts increasingly attempt to uncover with latent class structures.
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