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Abstract

An increasing number of studies are concerned with the use of alternatives to random
utility maximisation as a decision rule in choice models, with a particular emphasis on regret
minimisation over the last few years. The initial focus was on revealing which paradigm fits
best for a given dataset, while later studies have looked at variation in decision rules across
respondents within a dataset. However, only limited effort has gone towards understanding
the potential drivers of decision rules, i.e. what makes it more or less likely that the choices of
a given respondent can be explained by a particular paradigm. The present paper puts forward
the notion that unobserved character traits can be a key source of this type of heterogeneity and
proposes to characterise these traits through a latent variable within a hybrid framework. In
an empirical application on stated choice data, we make use of a mixed random utility-random
regret structure, where the allocation to a given class is driven in part by a latent variable
which at the same time explains respondents’ stated satisfaction with their real world commute
journey. Results reveal a linkage between the likely decision rule and the stated satisfaction
with the real world commute conditions. Notably, the most regret-prone respondents in our
sample are more likely to have aligned their real-life commute performance more closely with
their aspirational values.
Keywords: random regret, random utility, latent class, decision rules, hybrid models

1 Introduction

Significant effort has gone into understanding and modelling variability in human behaviour across
different sectors, ranging from health to transport. In recent years, there has been particular
interest in the use of alternatives to the random utility maximisation paradigm as a decision rule
in discrete choice models. While some work has looked again at long standing alternatives such as
elimination by aspects (EBA) or other non-compensatory decision rules, a key area of investigation
has been the potential use of regret minimisation rather than utility maximisation (see e.g. Chorus,
2012).

While early studies focussed solely on establishing which specific decision paradigm offered
the best performance on a given dataset, the assumption that all people in a sample use the
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same decision process was soon identified as a potentially restrictive assumption. As a result,
novel approaches have been put forward where several decision processes are allowed to co-exist
in the same population. It was in this context that Hess et al. (2012) proposed the use of latent
class structure where different decision rules are used in different classes. Each respondent falls
into every class according to an estimated probability, where this can vary across respondents.
In a similar vein, a mixed model has been proposed by Chorus et al. (2013) where instead of
distinguishing sub-groups of respondents, the attributes are allowed to be processed according to
either regret or utility.

Any model allowing for multiple decision paradigms clearly offers improvements in flexibility
and potential further insights into behaviour. Studies comparing the use of different decision
paradigms on different datasets can of course never determine whether a given decision rule was
actually ‘used’ by the respondents in the data, and can only establish which specific rule works
best in explaining the observed choices. Similarly, studies allowing jointly for multiple decision
paradigms can only ever come to conclusions as to a specific paradigm having been a more likely
approach for a given respondent, but not determine which one, if any of those included in the
model, was actually used.

The empirical evidence in the literature does suggest that different decision rules work dif-
ferently well in different datasets, while further gains in explanatory power can be obtained by
relaxing the assumption of within sample homogeneity. Focussing particularly on the case of RUM
vs RRM, the main approach has indeed been to use a population-wide treatment where all respon-
dents are assumed to use either regret or utility based decisions (e.g. Thiene et al., 2012; Chorus
et al., 2009; Hensher et al., 2011; Chorus and Rose, 2011). These applications have revealed to
date that regret-minimisation favours compromise alternatives with average performance for each
attribute (Chorus et al., 2008). Importantly, a regret driven choice process is shown to fit the data
better than utility maximisation in about half of the existing studies Chorus (2012). The differ-
ences in fit, however, are typically small. Other studies have gone further by allowing for mixtures
of decision rules, for example Hess et al. (2012); Chorus et al. (2013); Bekker-Grob and Chorus
(2013). A key issue in this context was highlighted by Hess et al. (2012) who observe substantial
confounding between taste heterogeneity and decision rule heterogeneity, an issue we will return
to later on in the paper. A first observation to be made is that work on comparisons between
decision at the sample levels or work allowing for within sample heterogeneity has arguably put too
much emphasis on statistical fit and not on the reasonableness of the behavioural implications or
economic outputs. More importantly however, there has been a comparative lack of investigation
as to the likely drivers of decision rule heterogeneity, i.e. the question of what makes a specific
person more or less likely to make choices that can be explained by a given paradigm. It is this
gap that the present paper seeks to address.

Most existing work does not offer an explanation as to why one behavioural paradigm might
be more suitable than another, whether working at the sample level or the level of individual
respondents. When such explanatory factors for decision rule heterogeneity have been investigated,
they mainly relate to observable features of the decision-maker or the context of the choice. For
instance, the approach of subsetting data reveals that men’s choices appear to be governed more
by regret-minimisation (Chorus and Rose, 2011). Other work has found that instances of superior
performance of regret models compared to RUM models align with a lack of experience with the
decision setting (Boeri et al., 2012).
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In the present paper, we take a somewhat different approach. In particular, we argue that there
are inherent and unobserved character traits which influence the way in which given people make
their choices. While observable characteristics such as age or gender may play a role in forming
these traits, there is substantial scope for idiosyncratic differences across people. Examples of
such character traits may include the fact that some individuals are more risk averse than others.
Similarly, some respondents will be more driven towards compromise solutions while others are
more relentless in their pursuit of maximum gain. It is this latter example that our empirical work
relates to and which forms the basis of our methodological developments, although they are easily
transferable to other context. In particular, we look at the specific case of a model where we allow
for the two most widely used types of paradigms, namely random utility maximisation (RUM) and
random regret minimisation (RRM). We argue that individuals who are driven to select the best
overall outcome are more likely to make choices that can be explained by RUM while those who
seek to avoid frustration, disappointment or regret are more likely to make choices that can be
explained by RRM.

A crucial component of our work is the assumption that it is inherent character traits that
determine which way a person makes their choices, rather than focussing on the influence of the
specific choice setting. The issue then remains how such character traits can be captured in our
models. The vast majority of applications looking at decision rule heterogeneity make use of data
from stated choice (SC) surveys. The choices captured in such data provide a snapshot of the
preferences by a person in a very controlled setting and may not be well suited on their own for
identifying underlying factors that drive the decision process. Instead, we put forward the combined
use of SC data and data relating to real world behaviour, and in particular a respondent’s stated
satisfaction with their real world choices.

Regret can be said to relate to prevention-based decision making where individuals are con-
cerned with avoiding unsatisfactory outcomes (Crowe and Higgins, 1997). This is in contrast with
a promotion-based goal direction where decisions are driven by a desire to approach a specific
end-state. In line with these insights we use data on aspirations to explain regret minimisation ef-
forts. Our specific hypothesis in this context is that a respondent who has an underlying tendency
to avoid outcomes that potentially lead to regret, frustration or disappointment is likely to have
aligned his/her real world choices accordingly. To test this hypothesis, we collect information on
respondents’ satisfaction with their real world commute journeys in the context of a survey which
first presented them with a set of stated choice scenarios for journeys to work. We then develop
a hybrid structure which explains both the stated choice behaviour and the stated satisfaction
with their real life situation. Our choice model allows jointly for utility maximisation and regret
minimisation within a latent class framework, where the probability of a given respondent falling
into either decision rule class is a function of a latent variable which relates to the specific char-
acter traits discussed above. This latent variable is used at the same time to model respondents’
satisfaction with their real world choices. A strong pattern emerges which shows that those re-
spondents who in our hypothetical scenarios are found to make choices which are better explained
by regret minimisation are also more likely to have expressed a higher level of satisfaction with
their real life commute. We interpret this as such respondents having an underlying tendency to
avoid regret and have used this over time to align their real world commute with their aspirations.

Our work links up well with other developments. Indeed, early explorations of latent variable
models (e.g. Ben-Akiva et al., 1999) discuss the impact of latent constructs in influencing decision
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processes. Similarly, the seminal paper by Swait (2001) on non-compensatory preference cutoffs
suggests as a future area of research the use of behavioural indicators to improve the identification
of the cutoffs. These insight are echoed also for the specific context or regret minimisation
modelling in Chorus and Bierlaire (2013) who underscore the need to explore to what extent
personality can trigger the decision-process under study.

The remainder of this paper is organised as follows. Section 2 gives an outline of the method-
ology, while 3 describes the survey instrument and model specification. Results and discussions
are given in Sections 4 and 5.

2 Methodology

Following Hess et al. (2012), a general specification of a model allowing for different decision rules
within a latent class framework is given by:

LCn (β1, . . . , βS , πn,1, . . . , πn,S) =

S∑
s=1

πn,sLCn,s (βs) . (1)

With this notation, LCn is the contribution to the likelihood function of the observed choices for
respondent n (out of N). This probability of observed choices is given by a weighted average
over S different types of models, where LCn,s is the probability of the observed sequence of
choices for person n if model s is used, and πn,s is the weight attached to model s (representing

a specific decision process), where
∑S

s=1 πn,s = 1, ∀n. In the above specification, βs is the vector
of parameters (e.g. utility coefficients) used in model s.

Hess et al. (2012) use a specification of this type for several different combinations of be-
havioural paradigms, including a mixture of regret minimisation and utility maximisation. The
approach has two key shortcomings. First, there is a risk of confounding between heterogeneity
in sensitivities and heterogeneity in decision rules. Second, there is limited insight into the factors
determining the choice of decision rule.

Hess et al. (2012) observe clear evidence of the first of the above problems, with for example
the random regret class in their RUM-RRM mixture primarily capturing behaviour that exhibits
strong fare sensitivity. When allowing for additional random heterogeneity within each decision rule
class, they observe substantially different patterns of heterogeneity in decision rules, with a notable
decrease in the weight for the RRM class. The inclusion of additional random heterogeneity was
dealt with by Hess et al. (2012) in a continuous manner, i.e. using integration over the distribution
of parameters for the given model. This would allow us to rewrite Equation 1 as:

LCn (Ω1, . . . ,ΩS , πn,1, . . . , πn,S) =
S∑
s=1

πn,s

[∫
βs

LCn,s (βs) f (βs | Ωs) dβs

]
, (2)

where we now have that βs ∼ f (βs | Ωs). In essence, we now replace the models in each
class of the overall structure by continuous mixture equivalents of those used in the specification
in Equation 1. The use of a continuous specification within each class (e.g. a mixed RUM
model in one class, a mixed RRM model in another class, etc) imposes substantial demands in
terms of computational complexity as well as empirical identification. Additionally, the results of

4



continuous mixture models are strongly influenced by the assumptions in terms of distributions
for each parameter. In the present paper, we instead put forward the use of an additional layer of
latent classes to accommodate the within model heterogeneity. Specifically, we now use:

LCn

(
β(1), . . . , β(S), πn,1, . . . , πn,S , $

(1)
n , . . . , $(S)

n

)
=

S∑
s=1

πn,s

Ks∑
k=1

$n,s,kLCn,s (βs,k) . (3)

In this notation, we now have that β(1) = 〈β1,1, . . . , β1,K1〉, where this corresponds to one vector
for each of the K1 classes using model 1, and where we allow for the possibility that Ks varies
across models, e.g. we might have more RUM classes than RRM classes. We additionally have

that $
(1)
n = 〈$n,1,1, . . . , $n,1,K1〉 gives the weights for the K1 classes conditional on using model

1, where
∑Ks

k=1$n,s,k = 1, ∀s. This model now uses Ks different classes for model s, where, if
Ks = 1∀s, the model collapses back to the specification in Equation 1. As can be noted from
Equation 3, the averaging across classes is performed at the level of individual respondents (i.e.
sequences of choices), recognising the repeated choice nature of the data. It is clear that the
use of additional random heterogeneity in sensitivities conditional on a given model type cannot
completely eliminate the risk of confounding between this type of variation and heterogeneity in
decision rules. It can only ever aim to reduce this risk, where the use of a latent class approach
can have potential advantages over a continuous mixture kernel in terms of the flexibility of the
resulting distribution in sensitivities within a model.

The other shortcoming of the structure thus far is the lack of explanation as to what drives the
likelihood of a given paradigm being more appropriate for one specific respondent than another.
One possibility would be to make the class allocation probabilities π a function of respondent
specific characteristics, i.e. writing πn,s = g (γs, zn) where zn is a vector of characteristics of
respondent n and γs is a vector of estimated parameters. Alternative, we could make the class
allocation probabilities a function of the settings of the choice task, which would also involve
repositioning the weighted averaging across classes to the level of individual tasks rather than
individual respondents.

In the present paper, we take a different approach. In particular, we hypothesise that underlying
respondent-specific character traits can be used to explain the allocation to the different decision
paradigm classes. Working with a single such trait for the sake of exposition, let us refer to it
as αn for respondent n. Simplifying our overall structure further to the case of just two decision
paradigms (i.e. S = 2, which is consistent with our later empirical setting), we now make the
probability of a given respondent n being allocated to either of the two paradigm classes a function
of αn by writing:

πn,1 =
1

1 + eδπ,2+ταn
(4)

πn,2 =
eδπ,2+ταn

1 + eδπ,2+ταn
. (5)

In this specification, δπ,1 is a constant that allows us to capture the sample level weight for decision
rule 2 (using 1 as the base). The estimated parameter τ determines whether respondent n is more
or less likely to be allocated to class 2 than the average respondent in the sample, depending on
the value of αn.
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The key issue at this stage is that the character traits likely to drive decision rule heterogeneity
cannot be ‘observed’ by an analyst, i.e. αn is latent. A structural equation is used to model the
value of αn as:

αn = γ′zn + ηn, (6)

where zn is a vector of socio-demographic characteristics of respondent n, γ is a vector of esti-
mated parameters and ηn is a random disturbance which follows a standard Normal distribution
across individuals. In practice, it will likely be very difficult to find meaningful socio-demographic
explanators for underlying character traits, as these are more likely to be intrinsic to a person
and shaped by experience and lifestyle, either of which are difficult to capture in data. This
is a very similar situation to the difficulties inherent to to explaining attitudes on the basis of
socio-demographics, as highlighted recently by Abou-Zeid and Ben-Akiva (2014), drawing also on
Anable (2005).

Thus far, this model would simply allow for random (through ηn) and deterministic (through
γ′zn) variations across respondents in the class allocation probabilities. The model would be able
to estimate the relationship between the latent character traits and the likely decision rules only
on the basis of the data on hypothetical choices. As highlighted in the introduction, these however
only provide a snapshot of preferences in a very controlled settings at a particular point in time
and arguably do not permit us to make the full link to what we regard as person specific character
traits which are constant over a longer time horizon. For this reason, we make use of additional
information relating to other manifestations of these character traits.

Let us assume that our data contains additional variables at the level of each individual which
we hypothesise to be a function of the same latent character traits that also drive the allocation to
different decision paradigm classes in our latent class structure. The identification of such variables
is a difficult task and could encompass a range of different formats, be it answers to questions on
attitudes and perceptions, or descriptors of lifestyle and past experiences. Of crucial importance
within the behavioural concept at the heart of our approach is that they need to relate to long
term traits rather than short term feelings.

Under the assumption that these additional measures, referred to hereafter as indicators, say
In,1 to In,M grouped together into a vector In, are linked to the same underlying character traits
αn, we model their values as:

In,m = δI,m + ζmαn + υn,m, (7)

where δI,m is a sample level constant for indicator m, ζm captures the impact of the latent variable
αn on this indicator, and υn,m is an error term. The distributional assumptions made for the error
term (e.g. normal, logistic, etc) determine the functional form of the measurement model and are
thus a reflection of the nature of the indicators (e.g. continuous, ordinal, etc). As an example, if
In,m is continuous, we can for example use a normal density function to explain its value, and the
likelihood LIn,m of the observed value for indicator m for person n is then given by:

LIn,m =
1

σm
φ

(
In,m − ζmαn − δI,m

σm

)
(8)

where φ () is the standard Normal density function. If the indicators are zero centred by subtracting
the population mean, the estimation of δI,m becomes redundant.
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In estimation, we now jointly maximise the likelihood of the observed choices and the observed
values of the indicators. With both components being a function of the latent variables, we enable
the model to create a link between the behaviour in the short term context (i.e. stated choice)
and the longer term character traits. The resulting structure is an example of a hybrid model
(Ben-Akiva et al., 1999) and falls into a growing body of work that exploit such models for the
analysis of a range of behavioural traits such as attitudes, perceptions and future plans (see e.g.
Bolduc et al., 2008; Choudhury et al., 2010; Abou-Zeid et al., 2010; Daly et al., 2012). We believe
this to be the first specification of such a model within the context of allowing long term character
traits to explain decision rule heterogeneity in choice data.

The combined model specification now gives the joint probability of the observed choices
and the observed values of the indicators, both of which depend on αn. Owing to the random
component ηn in αn, this joint probability does not have a closed form solution, and integration
over the distribution of ηn is thus needed. Specifically, we have:

Ln =

∫
ηn

[
S∑
s=1

πn,s (αn)

Ks∑
k=1

$n,s,kLCn,s (βs,k)

][
M∏
m=1

LIn,m (αn)

]
φ (ηn) dηn (9)

where we make use of S different decision paradigm classes, with Ks classes for additional het-
erogeneity specific to a given decision paradigm class s. The first component gives the probability
of the observed choices for respondent n, where this is given by a latent class structure with two
layers of classes (for decision paradigm heterogeneity and within paradigm heterogeneity), as in
Equation 3. The latent term αn enters this part of the model in the decision paradigm class allo-
cation weights πn,s, as illustrated in Equation 4. The second component of the model gives the
probability of the observed set of values for the indicators, given by a product across the individual
measurement model components, each time explaining the value of an indicator as a function of
αn, as in Equation 7.

3 Data and model specification

3.1 Survey work

For our empirical application, we made use of data from an online survey conducted on rail and
bus commuters in the UK in 2010. The survey gathered 3,680 observations from 368 respon-
dents with information on experienced trip features (averaging trip attributes across 10 regular
trips corresponding to a week of commuting). The baseline data was used to generate stated
choice scenarios presenting three commuting options: one reference scenario representing each
respondent’s current situation, kept invariant across the 10 tasks, and two hypothetical, pivoted,
alternatives. Six attributes were selected to characterise the commute; travel time in minutes, fare
in £, the rate of crowded trips (out of ten trips), the rate of delays (out of ten trips), the aver-
age length of delays (across delayed trips), and the provision of a delay information service with
different pricing. The survey was designed using NGene (ChoiceMetrics, 2012) with a D-efficient
experimental design alongside appropriate conditions to avoid dominant alternatives. A total of
60 choice scenarios were generated and these were blocked into 6 sets of 10 tasks, minimising
correlation with the blocking variable.
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After completion of the stated choice tasks, data was also collected on aspirations relating to
commute journeys. In particular, respondents were asked to provide information on “acceptable”
and “ideal” conditions for the four core attributes attributes of their reference trip, namely travel
time, fare, the rate of crowding and the rate of delays. Respondents were solicited for these values
with the following instruction: “Taking into account technical constraints as well as the high rate
of usage of the public transport network, could you for your current commute trip indicate the
ideal values and realistic/acceptable values for the following attributes”.

Table 1 provides some summary statistics on the answers to these questions. Similar to findings
by Redmond and Mokhtarian (2001), the ideal values are observed to be lower than current
conditions in the vast majority of cases, with the highest rate across attributes of ideal values
being higher than current values arising for travel time and crowding, at only 3.26%, potentially a
result of respondent mistakes. The fact that acceptable values can be higher than current values is
not counter to intuition. Figure 1 explores the response patterns for the disparities between stated
ideal and acceptable values and the levels currently experienced further. It is clear that when
moving from ideal to acceptable, the distribution of differences with current values shifts towards
the left, that is towards smaller, even negative differences. Overall, there is a clear pattern where
acceptable values form an intermediate value between current and ideal fare or time. Further
details on the relationship between declared aspirations and current trip performance can be found
in Stathopoulos and Hess (2012).

Table 1: Comparing aspirations to current experience

travel time fare
ideal acceptable ideal acceptable

equal to current 20.92% 31.79% 9.51% 17.12%
higher than current 3.26% 10.33% 0.82% 5.98%

crowding rate of delays
ideal acceptable ideal acceptable

equal to current 35.05% 38.32% 21.74% 30.43%
higher than current 3.26% 13.04% 1.63% 11.96%

3.2 Specification for empirical example

Two different models were used in our empirical example, a simple latent class structure and the
hybrid equivalent incorporating the role of a latent variable. In addition, for model fit comparisons,
we also estimated simple RUM and RRM models as well as a latent class structure with one class
per paradigm, i.e. Ks = 1, ∀s. All models were coded and estimated using Ox 6.2 (Doornik,
2001), making use of Halton draws for the continuous random component in the hybrid model,
with simultaneous estimation of both model components in Equation 9. Given the highly non-
linear form of the log-likelihood function, multiple estimation runs were carried out, each time
using an initial search with 2, 000 sets of different randomly generated starting values.

In the specific empirical application conducted for the present paper, we make use of two
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Figure 1: Differences between current and acceptable or ideal values for main journey attributes
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decision paradigms within one model, such that S = 2, where s = 1 corresponds to a RUM
structure, while s = 2 corresponds to a RRM structure. To allow for additional heterogeneity
within the paradigm specific classes, we use a further level of latent classes, as illustrated in
Equation 3, where we use Ks = 2, ∀s in our example.

Within the RUM classes, the deterministic utility for alternative i (i = 1, . . . , 3) for respondent
n in choice task t is given:

Vn,t,i,k = δRUM,i,k

+ βRUM,TT,kTTn,t,i

+ βRUM,LF,k ln (Fn,t,i)

+ βRUM,RD,kRDn,t,i

+ βRUM,ED,kEDn,t,i

+ βRUM,C,kCn,t,i (10)

where k = 1, 2 refers to the two RUM specific classes. With the notation used here, δRUM,i,k
is an alternative specific constant which is set to zero for i = 3, TTn,t,i refers to travel time,
ln (Fn,t,i) is the natural logarithm of the fare attribute (following evidence of strong decreasing
marginal sensitivities), RDn,t,i is the rate of delays, EDn,t,i is the expected delay (rate multiplied
by average delay), and Cn,t,i is the rate of crowding. No consistent significant effects were found
for the delay information attribute.

With an assumption of type I extreme value errors, the probability of respondent n choosing
alternative i in choice task t, conditional on RUM class k, is now simply given by the well known
Multinomial Logit (MNL) formula as:

PRUM,n,t,i,k =
eVn,t,i,k∑3
i=1 e

Vn,t,i,k
(11)

The paradigm used in the second set of classes is that of regret minimisation. The fundamental
assumption in regret theory is that final utility depends not merely on the realised outcome but also
on what could have been obtained by selecting a different course of action. This means that the
model incorporates anticipated feelings of regret (rejoice) that would be experienced once ex-post
decision outcomes are revealed to be “unfavourable” (“favourable”). The value of an alternative
can thus only be assigned following a cross-wise evaluation of alternatives. The main differences
compared to expected utility theory is that regret minimisation does not rely on transitivity and
that choice probabilities depend on examination of the full set of alternatives.

Following Chorus (2010), the deterministic regret for alternative i (i = 1, . . . , 3) for respondent
n in choice task t is given:

Rn,t,i,k = δRRM,i,k

+
∑
j 6=i

ln
(

1 + eβRRM,TT,k(TTn,t,j−TTn,t,i)
)

+
∑
j 6=i

ln
(

1 + eβRRM,LF,k(ln(Fn,t,j)−ln(Fn,t,i))
)
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+
∑
j 6=i

ln
(

1 + eβRRM,RD,k(RDn,t,j−RDn,t,i)
)

+
∑
j 6=i

ln
(

1 + eβRRM,ED,k(EDn,t,j−EDn,t,i)
)

+
∑
j 6=i

ln
(

1 + eβRRM,C,k(Cn,t,j−Cn,t,i)
)
, (12)

again with δRRM,i,k being an alternative specific constant which is set to zero for i = 3. The regret
is informed by all the pairwise comparisons, where regret for alternative i increases whenever an
alternative j 6= i performs better than i on a given attribute. Working again under the assumption
of type I extreme value errors, the probability of respondent n choosing alternative i in choice
task t, conditional on RRM class k, is now simply given by the analogue of a MNL formula as:

PRRM,n,t,i,k =
e−Rn,t,i,k∑3
i=1 e

−Rn,t,i,k
, (13)

where the negative signs relate to minimising rather than maximising regret.
Our combined model structure now makes use of two layers of latent classes, i.e. replacing

Equation 3 by:

LCn = πn,RUM [$n,RUM,1LCn,RUM (βRUM,1) +$n,RUM,2LCn,RUM (βRUM,2)]

+ πn,RRM [$n,RRM,1LCn,RRM (βRRM,1) +$n,RRM,2LCn,RRM (βRRM,2)] , (14)

where LCn,RUM (βRUM,k) is a product of MNL probabilities for the sequence of alternatives chosen
by respondent n, using parameters βRUM,k, with LCn,RRM (βRRM,k) being a corresponding product
of RRM probabilities. In our work, we did not parameterise the class allocation probabilities with
socio-demographics, such that we simply have:

πn,RRM =
eδπ,RRM

1 + eδπ,RRM
(15)

$n,RUM,1 =
eδ$,RUM,1

1 + eδ$,RUM,1
(16)

$n,RRM,1 =
eδ$,RRM,1

1 + eδ$,RRM,1
(17)

with δπ,RRM, δ$,RUM,1 and δ$,RRM,1 being estimated parameters, and with πn,RUM = 1−πn,RRM,
$n,RUM,2 = 1−$n,RUM,1 and $n,RRM,2 = 1−$n,RRM,1.

This completes the specification for the simple latent class model. In the hybrid model, we
additionally make use of a latent variable αn, where we did not include a deterministic component
within Equation 6 owing to a desire to not confound the drivers of decision rule heterogeneity with
heterogeneity caused by socio-demographic factors. In the presence of the latent variable αn, the
class allocation probabilities at the paradigm level now become:

πn,RRM =
eδπ,RRM+τRRMαn

1 + eδπ,RRM+τRRMαn
, (18)
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while still having that πn,RUM = 1− πn,RRM.
As outlined in the theory section, this latent variable is now also used to explain the val-

ues for a number of indicators in the measurement model component of the hybrid structure,
where the indicators used in our work relate to a respondent’s level of satisfaction with their real
world commute, in particular how well a respondent’s current commute journey lines up with their
aspirations. The stated disparities between ideal/acceptable and current values are measurable
indicators of underlying discontent or regret feelings. Our specific hypothesis is that a respondent
who is more likely to be driven by regret minimisation is less likely to have settled on a current
commute journey which performs poorly against their desired values on one or more key charac-
teristics. In doing this, we hypothesise that travellers have a certain amount of influence over their
commute journey and over time align it with their aspirations. The approach used in this paper is
to test whether the size of the gap between ideal or acceptable and current values is related to the
predisposition to use a regret-minimising decision rule. This is based on an underlying assumption
that the stated gap between ideal/aceptable outcomes and current experiences gives a quantifiable
measure of satisfaction with the respondent’s real world commute journey.

The fact that the answers to the questions on acceptable and ideal values were captured after
the stated choice questions has two key implications. Firstly, there is no way that us asking
questions about these aspirations can have any impact on the behaviour in the stated choice
survey, i.e. drawing a respondent’s attention to their current situation will not have any influence
on their stated choices, as the choices have already been made. Secondly, we are not arguing that
someone adopts a specific type of behaviour in the context of our stated choice survey, but rather,
that someone is or is not a regret-minimizer as a character trait - i.e. this is constant for a given
person. This is then the motivation for linking their responses as to the satisfaction with their
current commute to this underlying character trait, where our argument is that someone who is
more likely to be a regret minimiser is less likely to have chosen in real life a commute journey
which performs poorly compared to aspiration levels. Small disparities between aspirations and
reality are thus a manifestation of a regret minimising personality rather than a trigger of regret
minimising behaviour in the stated choice task.

It should again be acknowledged that the actual emotions which underlie the answers to the
follow-up questions could just as likely be manifestations of disappointment or frustration, rather
than regret per se. So while the indicators do not necessarily refer directly to regret, all these
emotions have a negativity about them which is likely to manifest itself more in a regret than a
utility concept, and thus respondents with smaller disparities are arguably more likely to exhibit
regret minimising traits than utility maximising traits.

We use eight separate indicators measuring the difference between the acceptable (respectively
ideal) values for the four core attributes and the corresponding value for the reference commute.
For fare, we again worked with the logarithm of fare, and all eight indicators were zero centred so
as to avoid the need to estimate a constant in the measurement equation. This thus gives us:

In,1 = TTn,1 − TTn,ideal −
N∑
n=1

TTn,1 − TTn,ideal
N

In,2 = TTn,1 − TTn,acc −
N∑
n=1

TTn,1 − TTn,acc
N

12



In,3 = ln (Fn,1)− ln (Fn,ideal)−
N∑
n=1

ln (Fn,1)− ln (Fn,ideal)

N

In,4 = ln (Fn,1)− ln (Fn,acc)−
N∑
n=1

ln (Fn,1)− ln (Fn,acc)

N

In,5 = RDn,1 −RDn,ideal −
N∑
n=1

RDn,1 −RDn,ideal

N

In,6 = RDn,1 −RDn,acc −
N∑
n=1

RDn,1 −RDn,acc

N

In,7 = Cn,1 − Cn,ideal −
N∑
n=1

Cn,1 − Cn,ideal
N

In,8 = Cn,1 − Cn,acc −
N∑
n=1

Cn,1 − Cn,acc
N

(19)

These eight indicators were then used in the model using a continuous measurement equation,
as in Equation 8, without the estimation of the now redundant constant. An illustration of the
combined model structure is presented in Figure 2.

Figure 2: Full structure

4 Results

Table 2 gives an overview of the different models estimated, including the base models for which
detailed results are not reported here. We can see that, in line with the majority of past work,
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RUM and RRM produce very similar model fit when estimated on their own, while a significant
improvement is obtained in the simple latent class mixture incorporating the two paradigms (LC
with Ks = 1, ∀s). Further significant improvements in fit are obtained when allowing for additional
heterogeneity at the paradigm level (LC with Ks = 2, ∀s). Finally, the model fit from the
hybrid structure cannot be directly compared to that of the other models given that it relates
to the likelihood of both the choices and the indicator values. Furthermore, as discussed by Vij
and Walker (2012), such model fit comparisons, even when factoring out the component of the
likelihood relating to choices alone, are not insightful.

We next turn to the estimation results for the choice model components of the simple latent
class structure (with Ks = 2, ∀s) and the hybrid equivalent in Table 3, where for ease of presenta-
tion, the subclasses for each paradigm are ordered such that the larger class goes first. We focus
first on the results in terms of class allocation probabilities. Both models suggest a relatively even
split between RUM and RRM, with a slightly larger probability for RRM in the simple mixture
(51.13%) than in the hybrid model (47.18%). These results are not surprising given the very
similar fit for the two base models. The RRM probabilities are higher than reported in Hess et al.
(2012) on the same data, possibly due to the use of the 2008 variant of the RRM model in that
work, which only uses comparisons with the best foregone alternative. In the paradigm specific
classes, we see a split into two rather evenly sized groups for RRM in both models, while the
split for RUM is slightly less balanced, especially in the base model without the latent variable
component. Finally, in the hybrid model, the presence of αn in the class allocation probabilities
in Equation 18 leads to variation in the probabilities for classes across respondents as a function
of the latent variable. Specifically, we see that we obtain a wide 95% confidence interval for the
probability for the RRM class, going from 16.77% to 79.85%, where this is then also reflected in
the probabilities for the RUM class.

In addition to estimates and t-ratios, Table 3 also gives ratios against the log-fare coefficients
for parameters in each class, multiplied by 10 to make them applicable to a base fare of £10.
While these equate to willingness-to-pay measures, it should be noted that this interpretation does
not apply in the RRM models. Turning to the detailed estimation results, we first focus on the
two RUM classes. We note that for k = 1, i.e. the first class, the relative sensitivities to travel
time, the log of fare and the rate of delays is similar in both models, where βRUM,RD,1 is not
statistically significant in either model (and positive in the base model). The relative importance
of crowding is very similar in both models, where the significance in the hybrid model is however
lower for βRUM,C,1. For βRUM,ED,1, we see a big drop in significance in the hybrid model, along
with a smaller relative sensitivity (by a factor of about three). The differences are much more
marked in the second class, i.e. for k = 2. We observed a much higher fare sensitivity in this class
in the base model, to the point where the results would suggest that this class primarily captures
respondents with very high cost sensitivities and little importance for the remaining attributes, also
reflected in the insignificant positive estimate for βRUM,ED,2 in the base model. When comparing
the results across the two classes, there is in fact a suggestion that both classes in the base model
primarily capture respondents with high fare sensitivity. This is an initial observation of potentially
higher risk of confounding between decision rule heterogeneity and taste heterogeneity in the base
model.

Turning next to the RRM classes, we note that the relative importance of the fare attribute
is more similar across the two classes in the base model, while the hybrid model clearly points

14



Table 2: Model fit summary

Observations
choices indicators par log-likelihood

RUM 3,680 0 7 -3,401.68
RRM 3,680 0 7 -3,402.59

LC (Ks = 1, ∀s) 3,680 0 15 -3,171.61
LC (Ks = 2, ∀s) 3,680 0 31 -3,025.64

Hybrid (Ks = 2, ∀s) 3,680 2,944$ 48 -9,533.25

$: 8 indicators per respondent

towards one class (k = 2) capturing respondents with higher fare sensitivity. The fact that such
a clear segmentation is absent in the base model, together with the earlier observations of both
RUM classes in the base model capturing high fare sensitivity suggests that the base model may
indeed be subject to more confounding. Looking in more detail at the two RRM classes, we see
very similar estimates in both models for k = 1. The second class on the other hand is less
comparable, even after accounting for the higher overall importance of fare in the hybrid model
with k = 2. Finally, it is worth paying some attention to the constant for the first alternative which
always uses the attribute levels for the reference journey. We see that overall, these constants
have more importance in the RRM classes than in the RUM classes. A significant negative value
for the constants for the first alternative would imply a higher rate of choosing that alternative
(given the minimisation of regret) and this would be consistent with individuals having aligned
their real world commute with underlying preferences, in line with our hypothesis. This is the
case with k = 1 for both models. With k = 2, the constants in the hybrid model are no longer
significant, where this is in line with this class being driven mainly by fare sensitivity. The positive
estimate for δRRM,1,2 in the base model is more difficult to explain and further suggests that the
patterns of heterogeneity retrieved by the base model, which does not include the latent variable,
are driven by other factors.

We can also see from Table 3 that the latent variable αn has a significant influence on the class
allocation probabilities, with a more positive value for αn leading to a higher probability for the
RRM class (positive sign of τRRM in Equation 18). The effect is strong enough to lead to a wide
95% confidence interval for the RRM share, as already discussed above. At the same time, the
latent variable αn explains the values of the eight indicator variables. Remembering that for each
indicator, a higher value equates to a greater positive difference between the concerned attribute’s
performance for the reference commute trip and the ideal or acceptable trip, the negative signs
we see for each ζ parameter in Table 4 suggests that a respondent with a more positive latent
variable is less likely to have a current commute journey which is substantially worse than the
ideal or acceptable trip on any of the four main characteristics. With the exception of reliability,
the effect of the latent variable is stronger for the difference to acceptable than ideal. It should
be acknowledged that the model is somewhat more successful in making a link with the stated
satisfaction with current crowding and reliability conditions than with travel time and fare, and
this is in part a reflection of more variability across reference trips in these measures. Overall
however, the results give clear empirical support to our hypothesis that a respondent who has an
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Table 4: Estimation results for measurement model component of hybrid structure

par est rob. t-rat

ζtime ideal -3.0804 -2.41
σtime ideal 15.176 8.71

ζtime acceptable -3.7674 -3.15
σtime acceptable 13.134 8.48
ζlog-fare ideal -0.05814 -2.12
σlog-fare ideal 0.39272 10.56

ζlog-fare acceptable -0.07216 -2.00
σlog-fare acceptable 0.4282 6.70

ζcrowding ideal -0.94657 -5.33
σcrowding ideal 2.4254 19.96

ζcrowding acceptable -0.94933 -5.03
σcrowding acceptable 2.2044 19.51

ζreliability ideal -2.2996 -14.80
σreliability ideal 1.0781 12.49

ζreliability acceptable -2.2985 -13.64
σreliability acceptable 0.85885 10.70

underlying character trait which makes him/her more likely to make choices that can be better
explained by regret minimisation than utility maximisation is also more likely to have chosen in
real life a commute journey that is more closely aligned with his/her aspirations.

5 Discussion

This paper has added to a growing body of work that recognises that within a sample population,
different decision paradigms may be better suited for one individual than for another. In contrast
with other existing work, we have moved away from a purely random treatment of such decision
rule heterogeneity or a treatment linking it to observed respondent characteristics. Rather, we have
focussed on attempts to link the behaviour in the stated choice survey to an underlying character
trait which will make some respondents more likely to make choices that can be explained by a
specific decision rule. In order to identify the role of such latent components, the proposed hybrid
model makes use of additional information from outside a stated choice context.

Our empirical application has focussed in particular on the case of contrasting random utility
maximisation with random regret minimisation. Our results show that a link can be made between
the likely decision rule for a given respondent in the stated choice scenarios and that respondent’s
stated satisfaction with the real world performance of their current commute journey with regard
to their declared aspirational outcomes. The hypothesis is that both outcomes (stated choices
and stated satisfaction with real world choices) are influenced by deep rooted character traits.
In particular, findings point towards a link between the tendency for regret minimisation and the
effective minimisation of disparity with desired trip features for a respondent’s real world commute
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journey. In line with the observation that regret is linked to the motive of moving away from
undesired outcomes (c.f. Crowe and Higgins, 1997), the most regret-prone respondents in our
sample have, to a larger extent, aligned their reference trip performance to their aspirational
values.

The use of such additional indicator variables is a key characteristic of hybrid choice models
and specifically the fact that these are treated as dependent rather than explanatory variables.
In the present context, this means that the latent variable is used to jointly explain the hetero-
geneity in class allocation probabilities and the values of the additional indicator measures. This
is in contrast with simply using the indicators as explanatory variables within the class allocation
probabilities, i.e. replacing αn by f (In) in Equation 18. As with all hybrid structures, this has the
advantage of avoiding the risk of endogeneity bias, making the model suitable for forecasting and
also accommodating measurement error in the indicators (cf. Abou-Zeid and Ben-Akiva, 2014).
In addition however, the causality link is very clear in our specific context. Indeed, the measures
relating to satisfaction with the real life commute are meant to relate to the outcome of real world
choice processes that are driven by the same character traits that also influence the choice pro-
cesses in the stated choice component. This is different from an assumption that the satisfaction
with real life commute journeys influences the choice of decision rule in the hypothetical choice
scenarios.

The approach presented in this paper permits analysts to gain further insights into behavioural
patterns and the process by which decision rules may be adopted. Much work remains to be
done, including testing the framework on other data or on other decision rules. Other than the
deeper insights into decision processes, a potential advantage suggested for the hybrid model in
the empirical work is a reduced risk of confounding between decision rule heterogeneity and simple
heterogeneity in sensitivities. This would arise as any implied heterogeneity in decision rule also
needs to be consistent with the measurement model component of the hybrid structure.

There is ample scope for future work in this area. A key issue remains the choice of appropriate
indicators for the measurement component of the model, and here the onus is on analysts to make
appropriate decisions at the survey design stage. The use of a richer set of indicators also opens
up possibilities of using multiple latent variables that relate to different character traits. Even
with the data used here, other possibilities would have arisen, such as using additional indicators
that focus on the differences between ideal and acceptable values. There of course also remain
possibilities of linking the choice of decision rules to the values of presented alternatives, but this
moves us away from the notion that the likely decision rule is influenced in particular by underlying
character traits.

We have also paid limited attention to the actual implications of the results for the different
model components, focussing instead on testing our underlying hypothesis. The field is only just
starting to explore the actual benefits of allowing for alternative decision rules, for example looking
at implications in terms of forecasting performance. Furthermore, stated choice data is not well
suited to computing elasticities, while there is still no clarity in terms of how monetary valuations,
which would provide another means of comparison, might be obtained from RRM models.
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