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Abstract

With a view to better capturing heterogeneity across decision makers and improving
prediction of choices, there is increasing interest in estimating separate models for each
person. Almost exclusively, this work has however taken place outside the field of trans-
port research. The aim of the present paper is twofold. We first wish to give an account
of the potential benefits of a greater focus on individual level estimates in transport ap-
plications. Secondly, we wish to offer further insights into the relative benefits of sample
level and individual level models (ILM) by drawing on a dataset containing an unusually
large number (144) of decisions on holiday travel per individual. In addition to comparing
existing approaches, we also put forward the use of a novel technique which draws on the
relative benefits of both sample level and individual level models by estimating ILMs in
a Bayesian fashion with priors drawn from a sample level model. Our results show only
limited differences between ILMs and conditionals from sample level models when working
with the full set of choices. When working with more realistic sample sizes at the person
level, our results suggest that ILMs can offer better performance on the estimation data
but that this is a result of overfitting which can lead to inferior prediction performance.
Our proposed Bayesian ILM model offers good intermediary performance. The use of
best-worst data rather than simple stated choice, as is done commonly in published ILM
work, does not lead to major changes to these findings.
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1 Introduction

Researchers have long believed that individuals differ in preferences, and substantial effort has
gone into deterministic and random treatment of these differences in choice models. Indeed,
and focussing on a transport context, a growing majority of academic applications in choice
modelling now allow for some level of random heterogeneity across a sample of individual
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travellers. This can take the form of continuous Mixed Logit models (e.g. Brownstone et al.,
2000) or latent class structures (e.g Ishaq et al., 2014), or a mixture of the two (e.g. Greene
and Hensher, 2013). A growing number of studies also allow for the influence of unobserved
(i.e. random) factors such as attitudes, perceptions and convictions (e.g. Daziano and Bolduc,
2013).

While the key emphasis in capturing heterogeneity has been on sample level models (i.e.
one model for the entire sample) accommodating heterogeneity across individual respondents
(see Train, 2009, for detailed overviews), there is a long established stream of work aimed at
using separate models for each respondent. One of the first efforts to model individuals can
be found in Beggs et al. (1981). The authors of this study estimated individual level models
(ILM) using exploded logit models on ranked data. Based on statistical tests they found that
allowing for individual level parameters leads to a significant improvement over the sample
level models.

The ILMs in the Beggs et al. (1981) study had 10 parameters and were estimated using 15
observations per respondent. As a result, almost fifty percent of the models did not converge.
A very similar pattern regarding convergence rate was found in another application of ILM
at that time (cf. Chapman, 1984). ILMs require a large number of observations per person,
and ranking data was seen as a convenient approach at the time of the Beggs et al. (1981)
and Chapman (1984) work. Around the same time however, Hausman and Ruud (1987) and
Ben-Akiva et al. (1991) found statistical differences in preferences across stages in ranking
and determined that even after controlling for scale differences across stages, the hypothesis
of a joint model was rejected. These findings more than likely played a key role in reducing
researchers’ interest in ILMs in subsequent years, and between the work of Chapman (1984)
and Louviere et al. (2008), i.e. a period of almost twenty-five years, only limited work was
conducted on modeling individual respondents’ choices.

Interest in ILMs started afresh in 2008 when Louviere et al. (2008) proposed a new way of
collecting a large number of observations per person by using efficient designs and a best-worst
(BW) elicitation format. Louviere et al. argued that the problems with ranking identified
by Hausman and Ruud (1987) and Ben-Akiva et al. (1991) could partly be due to the design
used. These earlier studies relied on ranking choice data from one or a small number of choice
tasks1. In contrast with these earlier applications, the study by Louviere et al. (2008) relied
on multiple choice tasks composed of no more than five alternatives, which were prepared
using optimal-in-difference designs (cf. Street et al., 2005; Burgess et al., 2006). Respondents
in this study were asked a sequence of BW questions in alternating order - the argument being
that BW is better than traditional ranking as it places less cognitive burden on respondents.
Studies relying on BW tasks are also believed to be superior to the standard ranking approach
as they take advantage of a person’s propensity to respond more consistently to extreme
options (cf. Flynn et al., 2007; Marley, 2009), by moving the focus away from middle ranked
alternatives. The field then witnessed strong popularity of BW data in estimating ILMs after
2008 (e.g. Lancsar and Louviere, 2008; Ebling et al., 2010; Marshall et al., 2011; Giergiczny
and Czajkowski, 2011). Nevertheless, it is important to also acknowledge growing doubts

1As an example, the study by Beggs et al. (1981) required respondents to rank 16 cars in just a single choice
situation.
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about the suitability of BW data, given evidence of differential drivers of preference for best
and worst choices (cf. Giergiczny et al., 2013; Rose, 2014).

Apart from the design and the elicitation format, Louviere et al. (2008) proposed a
weighted least squares (WLS) regression approach to fit models to individuals’ choices. It
is known that this estimation approach produces consistent, but inefficient, estimates (Lou-
viere and Woodworth, 1983), and it was used as the first-step estimator in the iteratively
reweighted least squares approach to obtaining maximum likelihood estimates (e.g. Green,
1984). An advantage of WLS compared to traditional ML estimators is that each individual
level discrete choice model will converge successfully, even if not all attributes were used in
making the choices. As a result, the majority of applications aimed at estimating individ-
ual level models in recent years have relied on WLS or ordinary least squares (OLS) (e.g.
Louviere et al., 2008; Ebling et al., 2010; Marshall et al., 2011; Frischknecht et al., 2011b).
OLS and WLS are recommended as “simple, easy-to-use methods that are highly likely to
produce correct answers” (Frischknecht et al., 2011b). In the same line, Marshall et al. (2011)
describe and discuss a comparison of the WLS approach with standard hierarchical Bayes
(HB) estimation of a Mixed Logit model (MMNL), and report that both predict equally well.
Frischknecht et al. (2011a) proposed a further method to estimate ILMs, in the form of a vari-
ant of maximum likelihood estimation known as the modified maximum likelihood (MML)
method.

What is notable is that the work on individual level models has taken place almost com-
pletely outside the transport field. While insights into individual preferences may be of
particular interest in a marketing context, where much research has been done, the same is
true for transport, be it in terms of understanding the impact of policy decisions on subsets
of the population, or in determining appropriate market segments (and pricing approaches)
for new services and products (e.g. new cars). One obvious example comes in understanding
the impact on distinct population segments of controversial policies such as road pricing (see
e.g. Levinson, 2010). Furthermore, having access to estimates at an individual level can be a
great asset in making more informed decisions on the specification for a sample level model,
or in conducting cluster analysis, as discussed for example by Train (2009, chapter 11). This
paper thus partly seeks to bring this literature to the wider attention of transport researchers.

Secondly, the paper has a methodological focus. While the above work has focused on the
estimation of models for a single individual, there is also a parallel body of work on calculating
respondent specific posterior distributions from the estimates of sample level models (see e.g.
Train, 2009, chapter 11), with free software available (Hess, 2010). Individual parameter
posterior distributions are also a natural output from HB models and their use is quite common
practice in building simulators and for general forecasting, particularly in marketing (see e.g.
Rossi et al. 2005 or Train 2009, chapter 12). The present paper first seeks to offer further
insights into the relative benefits of sample level and individual level models in terms of
explaining existing choices, understanding patterns of heterogeneity, and predicting future
choices. In addition to comparing existing approaches, we also put forward the use of a novel
technique which draws on the relative benefits of both sample level and individual level models
by estimating ILMs in a Bayesian fashion with priors drawn from a sample level model. We
conduct these comparisons with the help of a particularly suitable dataset which contains 144
choices per respondent.
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The remainder of this paper is organized as follows. Section 2 presents the different
estimation approaches applicable in this context, including our proposed hybrid approach.
This is followed in Section 3 by a discussion of our data collection effort, and in Section 4
by the presentation of our empirical work. Finally, Section 5 summarises our findings and
presents the conclusions of the research.

2 Estimation techniques

This section gives a brief overview of the main estimation techniques that are applicable and
which are used in the present paper, including our proposed hybrid approach. It should also
be noted that not every technique is applicable to each of the estimation runs, as discussed
in Section 4.

2.1 Maximum likelihood estimation of ILMs

The most simplistic approach to producing individual level estimates is to perform model
estimation at the level of individual respondents, i.e. using maximum likelihood estimation
of ILMs, leading to an individual vector of parameters βn for each respondent. As is well
known, this is however likely to lead to major issues in estimation. Albert and Anderson
(1984) identify cases in which maximum likelihood (ML) estimation will fail to converge.
They classify data sets into three categories: complete data separation, quasi-complete data
separation, and data overlap. Complete separation occurs when a combination of explanatory
variables classifies responses without error according to a strict inequality. Quasi-complete
separation occurs when a combination of explanatory variables classifies responses without
error up to a non-strict inequality. In all other cases, data have overlap, which means no
separation issues. ML estimation will fail to converge in cases of complete and quasi-complete
separation2 and it will converge only if data have overlap, i.e. there is no single rule that
correctly predicts the actual choice in each observation. A simple example of data separation
would be one where all choices for an individual can be explained on the basis of a single
attribute, such as where a person always chooses the cheapest option, or always chooses the
fastest option.

2.2 Conditionals from sample level MMNL models

An alternative to the estimation of ILMs is to estimate a sample level Mixed Multinomial
Logit (MMNL) model and to produce conditional parameter estimates. For full details, see
Train (2009, chapter 11).

In a MMNL model, we allow the vector β to follow a random distribution with parameters
Ω. Making an assumption of intra-respondent homogeneity, following the work of Revelt and

2If maximum likelihood estimates do not exist for some coefficients because of quasi-complete separation,
they may still exist for other variables in a choice model. In fact, if one leaves the offending variables in
the model, then the coefficients, standard errors and test statistics for the remaining variables are still valid
maximum likelihood estimates (Altman et al. (2003)).
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Train (1998), we then write the likelihood of the observed sequence of choices for decision
maker n as:

Ln (Ω) =

∫
β
Ln (β) f (β | Ω) dβ, (1)

where Ln (β) =
∏Tn
t=1 Pni∗t (β), with Pni∗t (β) giving the probability of the observed choice for

respondent n in task t, conditional on β.
Following estimation of the sample level distribution of β, further insights can then be

obtained in a Bayesian manner, by calculating information relating to a given individual’s
sensitivities on the basis of the sample level model estimates and that individual’s observed
choices. In a continuous mixed logit context, these calculations are straightforward, as dis-
cussed for example by Train (2009, chapter 11).

Using Bayes’ rule, we get:

L (βn | Cn) =
Ln (β) f (β | Ω)

Ln (Ω)
(2)

This gives us the probability of given values for βn, conditional on the observed choices (Cn)
for individual n, where it is important to remember that βn is not observed but is distributed.
It is then straightforward to calculate a conditional mean for βn as:

β̄n =

∫
βn

βnL (βn | Cn) dβn, (3)

with similar calculations to obtain the corresponding variance or other measures.

2.3 Hierarchical Bayes Models

For the HB models estimated in this study, we assumed the model structure as described
in Train (2009, chapter 12) and as implemented in the software package RSGHB (Dumont
et al., 2012). To describe HB estimation, we first need to step back and discuss some basics
of Bayesian inference. From Bayes theorem, we know that the posterior distribution K of a
set of model parameters θ given a set of choices Y is

K(θ|Y ) ∝ L(Y |θ)k(θ), (4)

where k(θ) is often described as the prior. The goal of Bayesian estimation is to sample from
this posterior distribution K to describe the model parameters.

In the context of a mixed logit model, the posterior distribution of b and W is defined by

K(Ω|y) ∝
∏
n

L(yn|Ω)k(Ω), (5)

with

k(Ω) = k(b)k(W ), (6)
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where b is the mean, W the covariance, and k(b) is assumed to be normal with mean b0 and
extremely large variance so while k(W ) is assumed to be inverted Wishart, IW (v, S). As with
classical estimation, the likelihood function does not have a closed form and so must be approx-
imated using simulation. This is typically done using a Metropolis Hastings algorithm. HB
estimation requires iterative sampling from three posterior distributions K(b),K(W ),K(β)
which is referred to as Gibbs Sampling.

With HB models, there is a need to specify values for b0, v and S. In particular, the
assumptions for v and S impact the prior sample variance assumed in estimation. This
prior variance can have a large impact on the individual level posterior estimates, β (see
e.g. Gelman, 2006). While some may see this as a disadvantage to Bayesian estimation, it
does allow the analyst to control the amount of Bayesian shrinkage that occurs with the
individual level posteriors. A higher prior variance results in more weight being placed on
each individual’s choice behavior, which reduces the amount of shrinkage that occurs and
results in more dissimilar (across people) posterior estimates. A smaller prior variance results
in more weight being placed on sample level behavior, increasing the amount of shrinkage
and giving posteriors that are more similar across individuals. In Section 4, different prior
variances and degrees of freedom were tested with the HB models to understand their impact
on the results.

2.4 Modified Maximum Likelihood

As mentioned in Section 2.1, it is known that maximum likelihood estimates only exist in the
case of data overlap and that models will otherwise fail to converge (Beggs et al., 1981; Albert
and Anderson, 1984). The problem of separation is particularly likely when the number of
observations is small, which is typically the case for ILMs. The modified maximum likelihood
(MML) method proposed by Frischknecht et al. (2011a) offers a way to overcome these data
separation challenges.

The approach relies on the principle of shrinkage which is accomplished by estimating
parameters based on maximum penalized likelihood. The penalty function adopted in the
MML method corresponds to a Bayesian approach designed to overcome the challenge of
finite samples, which is to augment the limited data with prior beliefs about the behaviour
of the data (see e.g. Geweke, 2005). As an example, with a completely flat prior, the method
involves adding in equally likely choices of all alternatives for all choice sets, which is essentially
random noise but guarantees convergence. An important issue is the weight attached to these
artificial choices - the best weight can be determined through a hold out sample3. Frischknecht
et al. (2011b) showed through Monte Carlo simulations that even with data sets as small
as the minimum degrees of freedom, MML can improve out-of-sample performance and have
superior parameter recovery and out of sample prediction compared to conventional maximum
likelihood.

2.5 Models using Ordinary Least Squares/Weighted Least Squares

Louviere et al. (2008) and Frischknecht et al. (2011b) provide guidance on how OLS and

3I.e. a sample not used in estimation.
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WLS4 estimation can be used for ILMs. For OLS, the 0 − 1 choice indicators are directly
used as the dependent variable, while, for WLS, regression models can be estimated from
the expected choice frequencies associated with the partial BW rankings or the full ranking
of the choice options in each set. As an example, in the case of BW with four alternatives,
Louviere et al. (2008) and Frischknecht et al. (2011b) suggest using ln(8) for best choice, ln(1)
for worst choice and ln(3) for both middle ranks. For full ranking, they suggest taking values
of ln(8), ln(4), ln(2) and ln(1), respectively. As noted by Frischknecht et al. (2011b) in the
case of OLS and WLS, the model estimates are on the wrong ”scale” to correctly predict
the choice probabilities. The parameter estimates are too small (or large) and systematically
under (or over)-predict the observed choice probabilities. In order to correct the estimates,
Louviere et al. (2008) suggests a correction approach which is further in Frischknecht et al.
(2011b). It equates to estimating an OLS (or WLS) model for a single person and then using
this model to predict the observed dependent variable for each choice option in each choice
set of interest. A next step calculates the associated residual mean squared error (MSE) for
each person, and the OLS (or WLS) model estimates for an individual are then multiplied by
a correction factor given by 1

MSE .

2.6 Individual Bayesian Models with Priors Based on Sample Level Results

Finally, we introduce a new individual level model estimated using a Bayesian framework
(ILM-B). For this model, in contrast with sample level Bayesian estimation, we treat each
individual’s data as independent in estimation (i.e. using a separate model per individual),
where we however use a sample level model to inform the assumptions of b0, v and S - in our
case a MMNL model. This differs from the approach laid out by Frischknecht et al. (2011a) in
that our priors used are informed by sample level behavior. This mitigates some of the issues
faced by sample level HB models where an analyst needs to assume a prior variance which can
have major effects on the individual posteriors estimates. The mean and variance estimates
from a classically estimated mixed logit where chosen to serve as the informative priors in
the model estimation. As with standard HB models, the variance of the prior controls the
amount of fitting to the individual level that occurs. To test the effect of changing the prior
variances on the ILM-B models, a scalar multiplicative factor was introduced. These scalar
factors adjust the prior variances up or down while still maintaining the relative differences
in variance for each parameter. Similar to the HB models, a larger multiplicative factor
will result in more emphasis being placed on individual choice behavior while smaller factors
would result in individual Bayesian models that do not differ far from the mean. An advantage
of ILM-B over classically estimated ILMs is that, by drawing on sample level information,
individual level results can still be obtained even for respondents where separation problems
arise.

4See e.g. Greene (2011).
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Figure 1: Example of choice scenario

3 Data

The data used in this paper comes from a study conducted on a sample of 822 students
at the University of Warsaw in 2012. The students were requested to participate in nine
independent sessions of the same stated choice survey about holiday destinations, where each
session presented respondents with sixteen choice tasks. This gives a total of 144 tasks per
person. To the best of our knowledge, only the paper by Brazell and Louviere (1998) makes
use of a similarly long panel. In each choice task, four holiday options of the same type were
presented to the respondent, where three types of holiday were used across the nine sessions;
general, at the seaside, and active (culture & nature). Figure 1 provides an example of the
trade-off experiment presented to the respondent. Each holiday type was described by five
overlapping attributes; price, length, tour operator, nightlife, accommodation, in addition to
a number of holiday specific attributes. The full list of attributes and their corresponding
levels is presented in Table 1, along with the labels used in the remaining tables and figures in
the paper. The presence of a price attribute allows us to estimate willingness-to-pay (WTP)
measures for the other components in our empirical analysis.

The elicitation format focused on the full preference ordering over the four alternatives,
and respondents were asked to provide this in three different choice formats, namely 1) best-
worst-best, 2) best-best-best, 3) free to determine (any combination of best and worst)5. The

5In best-worst-best, the respondents were asked in alternating order to indicate the best and the worst
alternatives. The process was sequential, i.e. the chosen best (or worst) alternative was then removed from
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Table 1: Data characteristics

Attributes Levels

Overlapping attributes

Price 1000, 1500, 2000, 2500 (PLN)
Length (DAYS) 7, 10 days

Organisation (AISEC) Individual (0), Organized by students’ organization (1)
Nightlife (NIGHT) None (0), Numerous discos and bars (1)

Accommodation (ACCOM) Camping (0), Hotel (1)

General holiday

Country Bulgaria (BG), Italy (IT), Spain (SP), Ukraine (UK)
Location Seaside (SEA), Mountains (MOUNTAINS)

At the seaside

Beach type (BEACH) stone (0), sand (1)
Walking distance to the beach in kilometres (BEACH-KM) 0.1, 0.5, 1.5 km

Water transparency in metres (CLEAR) 1.5, 3, 10 m
Crowding at the beach (CROWD) Low (0), Medium (1), High (2) (photos used)

Active

Historical and Cultural Sites (CULTR) Locally (1), Country known (2), Internationally known (3)
Distance to cultural attractions in kilometres (CULTR-KM) 1, 10, 50 km

Nature attractions (NATUR) Locally (1), Country known (2), Internationally known (3)
Distance to nature attractions in kilometres (NATUR-KM) 1, 10, 50 km

choice format alternated across sessions and each respondent saw each format three times
across the nine survey sessions, with each format being used with each holiday type, and with
the orders being randomised. The same design, composed of 48 choice tasks, was used for
each of the 3 choice formats. Within the same holiday type, respondents saw three different
sets of 16 choice tasks for a total of 48 choice tasks. Data collection was computer based, and
a Bayesian d-efficient design optimized for MNL model was used, with priors taken from the
pilot study conducted on a sample of 120 students in which each respondent was faced with
4 choice sets (4 alternatives each).

4 Empirical work

We start our analysis by reporting results for two sample level models in Table 2, one MNL
model, and the upper level (i.e. sample level) model of a HB structure. Both models were
estimated on the sample of 700 respondents making trade-offs involving all attributes6.

subsequent questions. In best-best-best, the full preference order was obtained through a sequence of ’best’
sequential questions as in the standard Ranking approach. In the final approach, respondents were free to
determine the elicitation format, and the full preference ordering was obtained through any combination of
best and worst; again the process was sequential.

6Non-traders are those respondents who did not use specific attributes in making their choices. These
respondents were removed to avoid issues with separation and quasi-separation in the ILM-ML models.
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Table 2: Estimation results for sample level models

MNL HB: sample level model

Respondents 700 700
Observations 100,800 100,800

Final LL -100,197 -69,411
par. 20 230

adj. ρ2 0.2828 0.5016

est. t-rat. mean t-rat std. dev. t-rat

ASC2 12.9970 3.29 15.6268 2.97 9.1582 13.43
ASC3 12.0640 2.94 12.5106 2.33 9.6369 13.15
ASC4 1.5874 0.38 2.5671 0.43 9.9623 12.26

ACCOM -258.2600 -17.77 -233.9588 -16.14 138.5360 16.60
AISEC -51.8320 -4.74 -62.7921 -4.77 112.1556 15.84

BEACH -350.8500 -18.35 -311.4717 -19.98 151.2714 14.42
BEACH-KM 224.5900 21.08 222.1589 22.32 58.1602 14.41

CLEAR -12.6800 -8.62 -12.9808 -4.97 4.5203 17.64
COST -0.0023 -44.63 -0.0047 -56.00 0.0041 14.44

CROWD 124.0700 15.56 108.6465 15.44 28.2514 13.99
CULTR -198.5900 -19.56 -188.0427 -17.29 74.5124 15.72

CULTR-KM 4.6275 18.86 5.0779 2.48 2.9224 18.62
DAYS -75.6980 -30.69 -76.0011 -23.18 6.8027 17.43

NATUR -113.4900 -12.43 -97.0410 -11.11 45.6564 14.34
NATUR-KM 2.8200 10.62 2.8983 1.41 2.9656 18.57

NIGHT -169.8300 -14.62 -203.3722 -14.44 134.0458 16.33
SEA -374.6500 -16.77 -325.5011 -14.90 318.0600 15.55
BG -223.7500 -14.16 -209.4899 -17.72 67.7571 10.38
IT -479.4800 -20.09 -419.9530 -22.31 210.0695 12.73
SP -568.2800 -22.88 -494.3252 -24.63 241.0464 13.68

For these models, we use a willingness-to-pay (WTP) space specification and assume Nor-
mal distributions for the random coefficients in the HB model, where we used the industry
default of a prior variance of 2 for all parameters (Sawtooth (2009)) with off-diagonal covari-
ance elements set to zero. Normal distributions were assumed for the random parameters due
to the exploratory nature of this work, while working in WTP space meant that no issues with
undefined moments for WTP measures would arise. It should also be noted that when looking
at individual specific conditional means, the sign violations are much smaller than with the
sample level distributions. As an example, even with the assumption of a Normal for price
sensitivity, fewer than 1% of the sample had posterior price sensitivities that were positive.
There is clearly a possibility that the findings might differ somewhat if the same analysis was
conducted in preference space, for example due to a differential impact by the priors. We leave
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such an extension for future work as it would also require different distributional assumptions
in the WTP space application for reasons of comparability.

The results show first of all a far superior model fit for the HB model, indicating sub-
stantial levels of heterogeneity in sensitivities across individual respondents. For the MNL
model, point values are reported, while for the HB model, we report the means and standard
deviations across respondents. Given that the models are estimated in WTP space, except
for the cost coefficient, all values reported relate to monetary valuations of the associated
attribute. In this case, a positive value means that a respondent is willing to pay extra money
(expressed in PLN) for reducing the associated attribute (e.g. for reducing distances and/or
crowding) while a negative value means that a respondent is willing to pay extra money for
that attribute (e.g. beach instead of mountain holiday, sand instead of stone beach, Spain
instead of UK).

In terms of estimates, we see that all holiday characteristics matter to respondents, with
some, like duration and destination, mattering much more than others, such as who organises
the holiday. In the HB model, we see some fluctuations in mean WTP measures compared to
the MNL model, but they remain rather stable overall. However, we see substantial variations
across individuals in their valuations for all characteristics.

We next move to our analysis looking at focussing on individual respondents. We start with
an analysis on the full data before looking at subsets and discussing prediction performance.
While the majority of existing studies have estimated ILM models using ranking or BW
data, our main focus is on comparing models estimated on best choice answers only. This
is made possible by having 144 choices per person, as discussed in Section 3. We further
justify this reliance on best choices only by results in Giergiczny et al. (2013) which show,
across different datasets, that sensitivities from BW data reveal the same or possibly even
larger inconsistencies across stages than standard ranking, going beyond the differences in
scale commonly taken into account7. The only exception we make to using data on best
choices only is for ILM models estimated using OLS/WLS, where we look at estimates for
three variants, namely best choice only, BW choices and full ranking8.

ILM models estimated using maximum likelihood were estimated in Matlab, OLS/WLS
ones in STATA, and the HB models were estimated using the R package RSGHB. To estimate
ILMs using MML, we used software available from the CENSOC webpage9, where we made
use of two available options to identify a suitable prior weight, specifying a flat conjugate
prior or an empirical Bayes conjugate prior. The MML method requires dividing the data
for each individual into an estimation sample and a validation sample of equal sizes. This
procedure was repeated ten times to create ten estimation and validation sample pairs, while
the number of prior weight values to search was set to 15. This follows the recommendations
in Frischknecht et al. (2011a).

7In all the datasets, significant and substantial differences between marginal utility estimates and implied
monetary valuations across stages were found. The obtained results consistently show that pooling all stages
and estimating joint models results in substantial bias in willingness-to-pay (WTP) values for numerous at-
tributes.

8We make this exception because it is a standard practice in applications that analyze individuals’ choices
using OLS/WLS.

9http://www.censoc.uts.edu.au/resources/software.html
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Figure 2: Scatterplots for selected WTP measures: analysis on full set of choices

4.1 Analysis on full set of choices

We next conduct a comparison between the results of the HB model at the individual level
(i.e. the lower level model using the conditional distributions) and the individual models
estimated using maximum likelihood (ILM-ML). The log-likelihood calculated at the means
of the conditional distributions for the HB model is -57,406.9 while the combined log-likelihood
across the ILM-ML models is -50,968.05. With no distributional assumptions imposed on the
ILM-ML models, this difference in model fit is to be expected.

The key interest in this part of the analysis is in differences in the actual estimation
results. Comparisons were made using scatterplots (Figure 2) and densities of individual-
specific mean values (Figure 3) for selected WTP measures (WTP for hotel vs camping,
students’ organisation vs individual, sand vs stone beach, and beach distance), as well as
Kolmogorov-Smirnov Tests for differences in distributions of all WTP measures (Table 3).
The scatter plots and densities demonstrate at least qualitatively that the HB conditional
means and ILM-ML point estimates are very consistent with each other for the four attributes
shown here. The scatterplots reveal some outliers, mainly for ILM, where there would be more
expectation of overfitting to the individual respondents.

The density function of the WTP for the beach (sand vs stone) attribute is also slightly
more peaked for the individual posterior means from the HB model compared to the ILM-ML
estimates. The results of the Kolmogorov-Smirnov tests provide more quantitative evidence to
suggest that the majority of the WTP distributions are not statistically different between the
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Figure 3: Selected densities for analysis on full set of choices

two approaches. Nevertheless, the results indicate that the distribution of the WTP values for
beach type (sand over stone), crowding and Bulgaria (BG) holidays are statistically different
between the ILM-ML and HB specifications.

4.2 Analysis on subsets of data

In practice, it is of course extremely rare to have data with as many as 144 choice tasks
per individual. For the next step in our analysis, we thus reduced the number of choice
tasks to 48 by focusing on a single holiday type, in this case the nature and culture holidays
(active). The attributes used in this case are the five overlapping attributes from Table 1, i.e.
price, length, type, nightlife and accommodation, along with the four holiday type specific
attributes, namely cultural sites, distance to these sites, nature sites, and distance to these
sites. Working again with traders only (across the 48 tasks), this yielded a sample size of
741 respondents, where this number is larger than when working with the full data, as more
issues with non-trading arose in the other types of holidays.

We repeated the same analysis from Section 4.1 using the WTP space utility specification
but added in OLS relying on best choice only as a further estimation technique. Figure 4
again provides some selected WTP densities comparing the results of the three models (type
of accommodation, organisation, cultural sites and distance to cultural sites). Qualitatively,
the ILM-OLS models show the biggest differences across the distributions presented, while
HB and ILM-ML are more similar. This is further supported by looking at the Kolmogorov-

13



Table 3: Kolmogorov-Smirnov tests for differences between HB and ILM-ML for analysis on
full set of choices

Statistic p-value∗

ACCOM 0.034 0.81
AISEC 0.026 0.97

BEACH 0.103 0.00
BEACH-KM 0.066 0.10

CLEAR 0.034 0.81
CROWD 0.121 0.00
CULTR 0.031 0.88

CULTR-KM 0.050 0.35
DAYS 0.044 0.50

NATUR 0.069 0.07
NATUR-KM 0.034 0.81

NIGHT 0.030 0.91
SEA 0.034 0.81
BG 0.127 0.00
IT 0.057 0.20
SP 0.060 0.16

∗ The Kolmogorov-Smirnov test is a test of statistical difference.

Smirnov tests in Table 4, which show significant differences between HB and ILM-OLS for all
WTP measures and for the majority of them when comparing ILM-ML and ILM-OLS. On
the other hand, ILM-ML and HB remain more similar.

4.3 Model performance in prediction

The analysis thus far has focused solely on a comparison of model estimates. We now turn
to the equally important issue of prediction performance. Individual level estimates are com-
monly used in forecasting especially in the context of market share simulators (Orme (2010)),
and it is thus also crucial to establish any risks of overfitting to the estimation data with the
different approaches.

We perform these tests in terms of forecasting performance on a set of within-sample
hold out tasks. To do this, we further subset the active and culture holiday data by randomly
selecting hold out samples of 12, 24 and 36 choice tasks from the set of 48 choice tasks for each
respondent, leaving 36, 24 and 12 choice tasks, respectively, for model estimation. With this
further reduction in estimation sample size, issues with separation arise for many respondents,
and we thus avoid the estimation of ILM-ML models given the resulting convergence issues10.

A larger number of models were estimated in this analysis to allow for further insights,
where we now use estimation in preference space rather than WTP space, which thus also

10As an illustration, with 48 tasks, we can estimate ILM models for all 741 respondents, but this drops to
601 respondents with estimation on 36 tasks, 306 with 24 tasks, and only 81 with 16 tasks.
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Figure 4: Selected densities on subset of 48 choices for nature and culture holidays

Table 4: Kolmogorov-Smirnov tests for differences between HB, ILM-ML and ILM-OLS on
subset of 48 choices for nature and culture holidays

p-values
HB v ILM-ML HB v ILM-OLS ILM-ML v ILM-OLS

ACCOM 0.06 0 0
AISEC 0.07 0.01 0.52

CULTR 0.31 0 0
CULTR-KM 0.03 0 0.04

DAYS 0 0 0
NATUR 0.17 0 0

NATUR-KM 0.08 0 0
NIGHT 0.15 0.01 0.14

allows us to generalise our findings beyond the WTP space context.
In terms of sample level models, we included MNL and classically estimated (through

maximum simulated likelihood) MMNL models (MMNL-MSL), along with MMNL models
estimated using Hierarchical Bayes (MMNL-HB), with different settings for prior variance and
degrees of freedom. For MMNL-MSL and MMNL-HB, we also computed respondent specific
conditional means for the various parameters. For MMNL-HB, we tested specifications with
different prior variances (PV) and degrees of freedom (DF). In both MMNL-MSL and MMNL-
HB, Normal distributions were once again used for all parameters and the full parameter
covariance matrix was estimated. The earlier provisos about Normal distributions still arise,
but once again, no WTP values were computed on the basis of ratios of coefficients and we
were solely concerned with prediction performance.

In terms of ILMs, we estimated models on the data for best choices only, using ordinary
least squares (ILM-OLS), modified maximum likelihood (ILM-MML) and our new proposed
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approach using Bayesian estimation of ILM models with priors from a sample level MMNL
model (ILM-B) estimated on the full sample of respondents. Finally, we also included two
models estimated using ordinary least squares on the extended set of individual choices,
namely on best-worst choices (ILM-OLS-BW) and on the full ranking of choices (ILM-OLS-
RANK). This is for completeness and to compare our models with those typically used. To
compare the performance of the different models in forecasting, the sample level log-likelihood
was calculated for each model on each of the three hold out samples, using the estimates from
the corresponding estimation sample (i.e. 12 estimation tasks for the hold out sample of 36
tasks).

Table 5 shows the results when using a sample of 12 tasks in estimation and the remaining
36 in prediction. In general, the ILM models provide better fit on the estimation sample
compared to the sample level models. However, with only 12 observations for estimation
and 12 parameters, there is strong potential for non-trading on attributes of the alternatives,
leading to a risk of overfitting of ILM models. As a result, while the ILM techniques do better
in terms of fitting the estimation data, the better model fit does not necessarily translate
into better forecasting accuracy with the exception of the ILM-B model using a variance
scalar of 0.1. As one might suspect given the inclusion of the additional data (providing
more information about an individual’s preferences), the ILM-OLS-BW and ILM-OLS-RANK
models outperformed the ILM-OLS model in predicting the hold out choices when looking
at first choices only. However, when comparing across all models, their performance on the
hold out sample was still only average. The best model in terms of prediction performance
(of those tested) was the ILM-B using a variance scalar of 0.1 - the use of a lower variance
reduces overfitting on the estimation data. While these are individual level models, they are
better described as “hybrid” models as they borrow heavily from sample level behaviour via
the assumed priors.

For sample level models, the classically estimated mixed logit model performs the best in
prediction on the hold out sample by about 700 points of log-likelihood in comparison with the
best MMNL-HB model. Except for the MMNL-HB model with the lowest prior variance, the
use of conditionals/posteriors results in poorer performance on the hold out tasks than when
using the same level model. This is true even though conditionals outperform the sample level
models in explaining the estimation sample. The poor performance is particularly evident for
HB models when increasing the prior variance which results in similar over-fitting issues that
we see in the ILM models. This is a clear warning as to the continued reliance on conditionals
in forecasting given the high risk of overfitting to the estimation sample when using modest
numbers of tasks per person.

Table 6 provides the results of the forecasting on 24 hold out tasks while using the re-
maining 24 tasks for model estimation. Again, we see that the ILM models generally do
significantly better in fitting the estimation data but that better fit does not translate into
better performance on the hold out sample. Of the ILM models estimated, the ILM-B again
performs best in explaining the hold out choices, and when using a small variance, performs
best of all the models.

In this case, the sample level models again generally outperform the ILM (though not
ILM-B) in terms of hold out prediction with MMNL-HB with a low prior variance offering
the best performance when working with sample level parameters, where this now comes
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close to ILM-B. An interesting contrast arises in relation to the performance with condition-
als when comparing the results to those obtained with an estimation sample of just 12 tasks.
Indeed, with 24 choice tasks, we now see that forecasting with conditional/posterior outper-
forms forecasting with the sample levels models, with the MMNL-HB model with the lowest
prior variance and the MMNL-MSL now doing marginally better than ILM-B when using
conditionals. This suggests that with 24 tasks, there is now far reduced risk of overfitting to
the estimation data, compared to the sample with just 12 choices. Nevertheless, 24 tasks is
more than what most studies have available to them, and forecasting with conditionals thus
remains risky.

Table 7 provides the results of the forecasting on the 12 hold out tasks while using 36
tasks for model estimation. Except for the ILM-OLS-BW and ILM-OLS-RANK models, the
ILMs still outperform the sample level models in fit on the estimation data11. We now see
for the first time similar performance in hold out prediction between the ILM models and
sample level models, a reflection of the fact that with a larger estimation sample, the risk of
overfitting is reduced. ILM-B agains performs best of all models when not using conditionals
from MMNL. However, with conditionals, the sample level MMNL-HB (PV 0.01 & DF 1)
performs best overall, slightly ahead of ILM-B.

5 Conclusions

This paper has sought to add empirical evidence and critical discussion in the context of
growing interest in modelling decisions at the level of individual agents. In particular, we have
contrasted the performance obtained with sample level models and individual level models in
both estimation and prediction. To this extent, we have made use of a dataset containing 144
choices per individual respondent but which is structured in such a way as to easily allow for
the use of subsets of the data. Along with comparing the performance of existing approaches,
we have also proposed the use of a new “hybrid” method, the ILM-B approach.

Our results on the full set of choices suggests that in the presence of substantial data at
the individual level, the individual-specific conditional parameters obtained from sample level
models (e.g. through HB estimation) are overall quite similar to those from individual level
models, where the latter has a slightly larger tendency to produce outliers. When working
with smaller subsets of the data, the differences between sample level and individual level
models increase, where, in the former, the lower level of information at the person level gives
more weight to the sample level results. The differences are also larger when comparing
HB with OLS estimates than with ILM-ML estimates. This raises some questions as to the
quality of estimates obtained with OLS in current practice, especially when such estimates
are obtained from data where ILM-ML estimation is not possible.

When working with sample sizes at the individual level that are more representative of
the majority of applied studies, we find that sample level models can be as good or even
outperform those individual level models currently estimated in practice, when looking at out-
of-sample prediction. There appears to be some promise in estimating individual level models

11ILM-OLS-BW and ILM-OLS-RANK are likely to do less well in explaining first choices only as they are
estimated on the entire ranking.

19



T
ab

le
7:

R
es

u
lt

s
u

si
n

g
es

ti
m

at
io

n
sa

m
p
le

of
36

ob
se

rv
at

io
n

s
p

er
in

d
iv

id
u

al

M
o
d

el
k

E
st

im
at

io
n

L
og

-l
ik

el
ih

o
o
d

H
ol

d
ou

t
L

og
-l

ik
el

ih
o
o
d

E
st

im
at

io
n

L
L

w
it

h
co

n
d

it
io

n
al

s
H

ol
d

ou
t

L
L

w
it

h
co

n
d

it
io

n
al

s
Im

p
ro

ve
m

en
t

in
H

ol
d

ou
t

w
it

h
co

n
d

it
io

n
al

s

M
M

N
L

-H
B

(P
V

0.
01

&
D

F
1)

90
-2

12
31

-7
72

8
-1

48
56

-6
24

4
19

.2
%

M
M

N
L

-H
B

(P
V

2)
9
0

-2
29

97
-8

11
9

-1
32

78
-6

60
0

18
.7

%
M

M
N

L
-H

B
(P

V
10

)
9
0

-2
54

85
-8

85
9

-1
28

95
-6

83
7

22
.8

%
M

M
N

L
-M

S
L

90
-2

16
90

-7
76

5
-1

63
90

-6
38

6
17

.8
%

IL
M

-M
L

8
89

2
-1

03
90

-2
07

74
N

/A
IL

M
-O

L
S

88
92

-1
74

36
-7

78
1

N
/A

N
/A

IL
M

-O
L

S
-B

W
88

92
-2

23
73
∗

-8
17

0∗
N

/A
N

/A
IL

M
-O

L
S

-R
A

N
K

88
92

-2
23

97
∗

-8
07

4∗
N

/A
N

/A
IL

M
-M

M
L

(fl
a
t)

8
89

2
-1

29
01

-7
20

4
N

/A
N

/A
IL

M
-M

M
L

(e
m

p
ir

ic
a
l

B
ay

es
)

88
92

-1
27

40
-7

25
3

N
/A

N
/A

IL
M

-B
(S

ca
la

r=
0.

1)
88

92
-1

50
77

-6
36

5
N

/A
N

/A
IL

M
-B

(S
ca

la
r=

1)
8
89

2
-1

24
86

-7
10

8
N

/A
N

/A
∗

T
h

es
e

li
k
el

ih
o
o
d

s
w

er
e

ca
lc

u
la

te
d

u
si

n
g

th
e

fi
rs

t
ch

oi
ce

on
ly

,
b

u
t

es
ti

m
at

io
n

w
as

ca
rr

ie
d

ou
t

on
th

e
fu

ll
d

at
a.

20



using Bayesian techniques mixed with priors that are drawn from sample level behaviour,
where this ILM-B approach produces the best prediction performance across all sample sizes
compared to using sample level MMNL estimates or traditional HB models. Only in the case
of large estimation samples do the conditionals from HB or MMNL models perform better.
Here, it is clear that the benefit of using conditionals from sample level models increases with
the amount of information collected at the individual level.

While those ILM models commonly used at the moment do have better model fit on
the estimation dataset across the analyses, this does not translate necessarily into better
prediction performance given the tendency to overfit on the estimation sample. It should be
acknowledged again that the majority of the work on ILMs partly addresses the issue of limited
data at the person level by making use of data not just on the most preferred alternative in
each task but through a fuller preference ordering, generally elicited through a best-worst
approach. However, recent work by Giergiczny et al. (2013) has questioned the reliability of
such data, and our results when using such data in the present paper in OLS estimation shows
that it does not necessarily translate into a greater ability to predict individual choices in the
holdout sample.

In closing, with the likely growing interest in individual level approaches also in a transport
context, care must be taken to not overfit on estimation data using currently used ILM
methods. Conditionals from sample level models (whether classical or HB) offer promise,
but require large numbers of choices per person for good performance. The hybrid ILM-B
approach put forward in this paper shows promising performance even with more modest
numbers of tasks. Indeed, with limited data per person, sample level models are necessary to
fill in the gaps at the individual level, and this is an inherent characteristic of that approach.
Testing this approach on other data is an important avenue for future work.
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