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Abstract

Most applications of discrete choice models in transportation now utilise
a random coefficient specification, such as mixed logit, to represent taste
heterogeneity. However, little is known about the ability of these models to
capture the heterogeneity in finite samples (as opposed to asymptotically).
Also, due to the computational intensity of the standard estimation proce-
dures, several alternative, less demanding methods have been proposed, and
yet the relative accuracy of these methods has not been investigated. This is
especially true in the context of work looking at joint inter-respondent and
intra-respondent variation. This paper presents an overview of the various
different estimators, gives insights into some of the theoretical properties,
and analyses their performance in a large scale study on simulated data.
In particular, we specify 31 different forms of heterogeneity, with multiple
versions of each dataset, and with results from over 16, 000 mixed logit esti-
mation runs. The findings suggest that variation in tastes over consumers is
captured by all the methods, including the simpler versions, at least when
sample size is sufficiently large. When tastes vary over choice situations
for each consumer, as well as over consumers, the ability of the methods
to capture and differentiate the two sources of heterogeneity becomes more
tenuous. Only the most computationally intensive approach is able to cap-
ture adequately the two sources of variation, but at the cost of very high run
times. Our results highlight the difficulty of retrieving taste heterogeneity
with only cross-sectional data, providing further evidence of the benefits of
repeated choice data. Our findings also suggest that the data requirements
of random coefficients models may be more substantial than is commonly
assumed, further reinforcing concerns about small sample issues.
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1 Introduction

In part as a result of improved estimation performance (cf. Bhat, 2001, 2003;
Hess et al., 2006), researchers and practitioners in transportation and beyond
are increasingly making use of the mixed logit model (cf. McFadden and Train,
2000; Train, 2009) for the representation of random taste heterogeneity across
consumers. While mixed logit has clear theoretical advantages over specifications
that assume taste homogeneity, relatively little attention has been paid to the
question as to how well the estimated models are able to recover the true patterns
of heterogeneity present in the data, especially with the sample sizes that are
typically used in practice.

When tests have been performed (see e.g. Munizaga and Alvarez-Daziano,
2005; Cherchi and Guevara, 2009; Cherchi and Ortúzar, 2010; Rose et al., 2011),
they have generally been limited to a few specifications and have focussed only on
the variation in tastes over consumers in the context of data containing multiple
choices by each consumer (i.e., panel data). Such an inter-respondent treatment
of heterogeneity alongside an assumption of constant tastes across choices for
the same respondent (cf. Revelt and Train, 1998) is now common-place, and has
been shown to lead to very significant improvements in model fit as well as more
reasonable estimates of taste variation (see for example the discussions in Hess
and Rose, 2009). Recently, however, a number of authors (Bhat and Castelar,
2002; Bhat and Sardesai, 2006; Hess and Rose, 2009; Cherchi et al., 2009; Yáñez
et al., 2011) have argued that tastes can vary across tasks for the same consumer
and that this “intra-personal” heterogeneity occurs in addition to the variation
over consumers (i.e., the “inter-personal” heterogeneity).

With the growing reliance on mixed logit models, the validity of the estimation
results is of great importance, independently of whether analysts rely on cross-
sectional or repeated choice data, and if the latter, whether intra-respondent het-
erogeneity is accommodated in addition to inter-respondent heterogeneity. The
aim of the present paper is to test the ability of various mixed logit specifications
to recover the true patterns of taste heterogeneity. We examine cases with inter-
personal heterogeneity only, as well as cases with both intra- and inter-personal
heterogeneity. We estimate the models on different sample sizes and with different
types and levels of heterogeneity.

An important additional point arises here. In the case of cross-sectional data,
only one estimator applies, with the likelihood given by a product of integrals
of individual logit probabilities. In the case of repeated choice data with inter-
respondent heterogeneity but intra-respondent homogeneity, the correct specifi-
cation is the estimator in Revelt and Train (1998), with the likelihood still given
by a product of integrals, where the integrands are however now sequences of
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choices, i.e. themselves a product of logit probabilities. This thus leads to a more
complex specification, and an alternative may be to rely on a cross-sectional spec-
ification, which would entail estimating the model as if the multiple choices of
each consumer were from different consumers. A variation on this cross-sectional
approach has also been employed (see e.g. Paag et al., 2001), in which the same
draws are used across choice situations for a given consumer. For either of these
approximations, the finite sample accuracy has not been explored thus far, a point
that we address in our empirical work. From a theoretical perspective, we also
confirm that under certain conditions, the cross-sectional approximation on panel
data is consistent, and similarly explore the as yet undefined properties of the
Paag et al. (2001) estimator.

Generalising to a framework with both intra-personal and inter-personal het-
erogeneity, as discussed by Bhat and Castelar (2002), Bhat and Sardesai (2006),
and Hess and Rose (2009), creates an even greater computational burden due
to the presence of multiple layers of integration. Several procedures have been
suggested in this context that can reduce estimation time considerably, and have
been used for example by Yáñez et al. (2011). The question that we address is
whether these computational savings can be realised without undue loss of accu-
racy. This issue is important not only with respect to inter- and intra-personal
variation but also for more general forms of heterogeneity, such as the specifica-
tion of Cherchi et al. (2009), which combines inter-personal heterogeneity with
two layers of intra-personal heterogeneity: across choices made on different days
of the week, and across choices made in different weeks, and which uses an ap-
proximation in estimation. Our empirical work shows the shortcomings of these
approximations in the recovery of the true patterns of heterogeneity, and we
highlight the importance of further work to look into the asymptotic properties
of estimators for such models.

For the purely cross-sectional experiments, we note substantial data require-
ments, stressing the advantages of repeated choice data. Across our remaining
experiments, the findings highlight the importance of relying on the correct es-
timator. While the approximations to the simple inter-respondent specification
are indeed consistent, the sample size requirements are more substantial than is
commonly assumed, even with the simple utility functions used here. In addi-
tion, we note that these approximations do not in fact lead to any computational
gains. In the case of joint inter-respondent and intra-respondent heterogeneity,
the approximations do have clear computational advantages, but are unable to
reproduce the correct patterns of heterogeneity, even at large sample sizes or
when making use of a very high number of draws. Additionally, even for the
correct estimator, the sample size requirements are substantial when aiming to
retrieve both inter-respondent and intra-respondent heterogeneity.
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The remainder of this paper is organised as follows. The following section
gives an overview of the various specifications. This is followed in Section 3 by a
discussion of the empirical framework used in the analysis. Results of the analysis
are summarised in Section 4, while the conclusions are presented in Section 5.

2 Model specification and estimation

In this section, we look in detail at the specification of mixed logit models on
cross-sectional data, on panel data with purely inter-personal heterogeneity, and
on panel data with both intra- and inter-personal heterogeneity. In each case,
we show the maximum simulated likelihood estimator method, while for the two
types of panel data, we also discuss other estimation procedures that have been
proposed.

2.1 Cross-sectional data

Estimation of a mixed logit model on cross-sectional data is relatively simple
computationally. However, the estimates are often considerably less precise than
with panel data. Correlations over multiple choices faced by a given consumer
assist in identifying taste heterogeneity1, and cross-sectional data do not pro-
vide information on these correlations since only one choice is observed for each
consumer. The question that we address is whether taste heterogeneity can be
accurately estimated on cross-sectional data, and what sample size is needed to
attain an acceptable level of precision.

Notation is the following. We observe a sample of N consumers, indexed as
n = 1, . . . , N , where each consumer is observed to face only one choice situation.
Let βn be a vector of the true, but unobserved taste coefficients for consumer
n. We assume that βn ∀n is iid over consumers with density g (β | Ω), where Ω
is a vector of parameters of this distribution, such as the mean and variance.
Let jn be the alternative chosen by consumer n, such that Pn (jn | β) gives the
probability of the observed choice for consumer n, conditional on β. The mixed
logit probability of consumer n’s chosen alternative is

Pn (jn | Ω) =

∫
β
Pn (jn | β) g (β | Ω) dβ. (1)

1As an example, if one consumer is observed always to choose the cheapest alternative and
another consumer always chooses the most expensive alternative, then an inference that the
price coefficient differs for these two consumers can be reasonably made.
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The log-likelihood function is then given by:

LL (Ω) =

N∑
n=1

ln

(∫
β
Pn (jn | β) g (β | Ω) dβ

)
, (2)

Since the integrals do not take a closed form, they are approximated by simula-
tion. The simulated log-likelihood is:

SLL (Ω) =
N∑
n=1

ln

(
1

R

R∑
r=1

Pn (jn | βr,n)

)
. (3)

where βr,n gives the rth draw (out of R) from g(β | Ω) for consumer n. Different
draws are used for the N consumers, for a total of NR draws.

2.2 Panel data with inter-personal variation only

Panel data allow us to utilise correlations over choice situations for a given con-
sumer. As above, we observe a sample of N consumers, identified as n with
n = 1, . . . , N , but now consumer n faces Tn choice situations. In this section
we allow tastes to vary over consumers but we assume that the tastes of each
consumer are constant over choice situations. Consistent with this assumption,
let βn be a vector of the true, but unobserved taste coefficients for consumer n.
We assume that βn is iid over consumers with density g (β | Ω). Let Pn,t (i | β)
denote the logit probability that consumer n chooses alternative i in choice sit-
uation t, conditional on β. Now let jn,t be the alternative chosen by consumer
n in choice situation t, such that Pn,t (jn,t | β) gives the logit probability of the
observed choice for consumer n in choice situation t, conditional on β. The mixed
logit probability of consumer n’s observed sequence of choices (i.e., the choices in
all the situations that the consumer faced) is

Pn (Ω) =

∫
β

Tn∏
t=1

Pn,t (jn | β) g (β | Ω) dβ. (4)

Note that, since the same tastes apply to all choices by a given consumer, the
integration over the density of β applies to all the consumer’s choices combined,
rather than each one separately.

The log-likelihood function for the observed choices is then:

LL (Ω) =

N∑
n=1

ln

(∫
β

[
Tn∏
t=1

(Pn,t (jn,t | β))

]
g (β | Ω) dβ

)
. (5)
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The simulated LL (SLL) is:

SLL (Ω) =
N∑
n=1

ln

(
1

R

R∑
r=1

[
Tn∏
t=1

(Pn,t (jn,t | βr,n))

])
. (6)

Note that in this formulation, the product over choice situations is calculated for
each draw; the product is averaged over draws; and then the log of the average
is taken. The SLL is the sum over consumers of the log of the average (across
draws) of products. The calculation of the contribution to the SLL function for
consumer n involves the computation of RTn logit probabilities.

Instead of utilising the panel nature of the data, the model could be esti-
mated as if each choice were from a different consumer. That is, the panel data
could be treated as if they were cross-sectional. The objective function is similar
to Equation 2 except that the multiple choice situations by each consumer are
represented as being for different consumers:

LL (Ω) =
N∑
n=1

Tn∑
t=1

ln

(∫
β
Pn,t (jn,t | β) g (β | Ω) dβ

)
, (7)

where the integration across the distribution of taste coefficients is applied to
each choice, rather than to each consumer’s sequence of choices. This function is
simulated as:

SLL (Ω) =
N∑
n=1

Tn∑
t=1

ln

(
1

R

R∑
r=1

Pn,t (jn,t | βr,t,n)

)
. (8)

where βr,t,n is the rth draw from g(β | Ω) for choice situation t for consumer n.
Different draws are used for the Tn choice situations for consumer n, as well as for
the N consumers. Consumer n’s contribution to the SLL function utilises RTn
draws of β rather than R draws as in Equation 6, but involves the computation
of the same number of logit probabilities as before, namely, RTn. The difference
is that the averaging across draws is performed before taking the product across
choice situations.

If the parameters are identified by cross-sectional data (i.e, if the parameters
could be estimated with only one choice situation per consumer), then the esti-
mator based on this approach is consistent2. This consistency follows from the
general theorem for consistency of extremum estimators (e.g. Ruud, 2000, Lemma
15.2, p. 322). Consider a statistic sn(θ) that depends on parameters θ and

2An estimator is consistent if it converges on the true value when sample size rises without
bound.
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varies in the population. The general consistency theorem states: If En(sn(θ)) is
uniquely maximised at the true value of θ, then, under standard regularity condi-
tions, the estimator argmax

∑
n sn(θ) on a random sample from the population

is consistent. The assumption that En(sn(θ)) is uniquely maximised is the condi-
tion for identification, since otherwise different values of θ would attain the same
maximum. Now consider our situation. Let Lnt(θ) be a person’s log-likelihood
value for one choice situation t. Suppose that En(Lnt(θ)) is uniquely maximised
at the true parameters for any t, such that the parameters are identified with only
one choice per person and the maximum likelihood estimator based on one choice
for a sample of consumers is consistent. Now consider the statistic that sums
the log-likelihood of each choice over T choices for each person:

∑T
t=1 Lnt(θ).

The expectation of this sum, En(
∑

t Lnt(θ)) =
∑

tEn(Lnt(θ)), is also uniquely
maximised at θ since each element in the sum is uniquely maximised at θ. The
estimator defined by argmax

∑
n

∑
t Lnt(θ) on a sample of people is therefore

consistent. Efficiency3 is reduced, relative to the panel specification, because the
correlation over observations by a given consumer is not utilised in the estimation
criterion. The procedure is an example of a quasi-likelihood estimator4 described
by, e.g. Varin (2007), that in general are consistent with a loss of efficiency.
The sandwich estimator is appropriate for its covariance matrix, since the sand-
wich formula does not simplify, as with full-information maximum likelihood on
a correctly specified model, to the inverse of the hessian.

Another alternative (see e.g. Paag et al., 2001) is to utilise the cross-sectional
formulation but, instead of taking different draws for each choice by a given con-
sumer, to use the same draws in all the choice situations for the same consumer.
The SLL under this approach is:

SLL (Ω) =
N∑
n=1

Tn∑
t=1

ln

(
1

R

R∑
r=1

Pn,t (jn,t | βr,n)

)
. (9)

The only difference in comparison with Equation 8 lies in dropping the additional
subscript t from the draws of β, where the same set of R draws is now reused in the
simulation of all Tn choices for consumer n, thus leading to a requirement for NR
draws, identical to the maximum likelihood approach for panel data, and different
from the R

∑N
n=1 Tn draws for the cross-sectional estimation in Equation 8. This

approach attempts to accommodate the panel nature of the data by reusing the
same draws across choices for a given consumer. It is possible that the approach

3An estimator is efficient within a class (eg among consistent estimators) if its asymptotic
sampling variance is lower than any other estimator within the class. One consistent estimator
is more efficient than another if the former has lower asymptotic sampling variance.

4also called composite likelihood or pseudo-likelihood estimators
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accommodates some correlation across replications for a given individual through
using the same draws in simulation, and this may increase efficiency relative to the
purely cross-sectional approach, at least for a small number of draws. However,
asymptotically, as the number of draws rises as needed with sample size, this
estimator is equivalent to the previous one, which treats each choice separately.
Any efficiency that is perhaps gained with a small number of draws disappears
as the number of draws rises. As a result, the estimator is consistent with a
loss of asymptotic efficiency under the same conditions as the previous estimator.
Limited evidence reported by Choudhury et al. (2009) seems to support this
theoretical evaluation.

At this stage, it seems useful to briefly compare the three specifications dis-
cussed in this section. The specification in Equation 6 accommodates the within
respondent homogeneity by performing the averaging across draws at the level
of a sequence of choices for a given respondent. The probability of the entire
sequence of choices is calculated for a single draw, thus recognising that tastes
stay constant over choice situations. The averaging across draws recognises the
uncertainty from the analyst’s perspective in the specific values for β for the given
respondent. In the cross-sectional specification in Equation 8, we do not utilise
the fact that we have multiple observations for each respondent , estimating as if
choices were made by different people. The same applies in Equation 9, with the
only difference that the same draws are reused across observations for the same
respondent. However, each probability is still simulated on its own.

2.3 Panel data with both inter- and intra-personal variation

We now generalise the specification on panel data to include intra-personal taste
heterogeneity in addition to inter-personal heterogeneity.5 Let βn,t = αn + γn,t
where αn is distributed across consumers but not over choice situations for a given
consumer, and γn,t is distributed over choice situations as well as consumers. That
is, αn captures inter-personal variation in tastes while γn,t captures intra-personal
variation. Their densities are denoted as f(α) and h(γ), respectively,6 where their
dependence on underlying parameters, contained collectively in Ω, is suppressed
for convenience.

5We focus on the simple case of unstructured additional heterogeneity across tasks for the
same consumer (cf. Bhat and Castelar, 2002; Bhat and Sardesai, 2006; Hess and Rose, 2009).
An example of a more structured approach is given by Cherchi et al. (2009).

6The mean of βn is captured in αn such that the mean of γn,t is zero.

8



The LL function is given by:

LL (Ω) =

N∑
n=1

ln

[∫
α

(
Tn∏
t=1

(∫
γ
Pn,t (jn,t | α, γ)h (γ) dγ

))
f (α) dα

]
. (10)

The two levels of integration create two levels of simulation, which can be specified
as:

SLL =

N∑
n=1

ln

[
1

R

R∑
r=1

(
Tn∏
t=1

1

K

K∑
k=1

(Pn,t (jn,t | αr,n, γk,t,n))

)]
. (11)

This simulation uses R draws of α for consumer n, along with K Tn draws of γ.
Note that, in this specification, the same draws of γ are used for all draws of α.
That is, γk,t,n does not have an additional subscript for r.7 The total number of
evaluations of a logit probability for consumer n is equal to RK Tn, compared to
RTn when there is only inter-personal variation.

The computational cost of implementing this method with large K is very
high, and thus far, it has not been implemented in any of the major packages.
BIOGEME (Bierlaire, 2003) allows the user to estimate models combining inter-
personal and intra-personal heterogeneity by using one draw of γ for each draw of
α, where the intra-respondent nature of γ is recognised by using different draws
for different choice situations. This approach is used for example by Yáñez et al.
(2011). The SLL takes the form:

SLL =

N∑
n=1

ln

[
1

R

R∑
r=1

(
Tn∏
t=1

Pn,t (jn,t | αr,n, γr,t,n)

)]
. (12)

The draws of γ are now subscipted by r (since a different draw of γ is used for
each draw of α) and t (since different draws are taken across the t tasks), but
are not subscripted by k (since only 1 draw is taken for each value of α.) This
specification reduces the number of computations for consumer n from RK Tn
back to RTn. The method differs from Equation 11 in two ways: by reducing
K to 1 and by using different draws of γ for each draw of α. By using just one
draw from γ for each draw from α, we now longer recognise the fact that for a
given individual, i.e. a fixed value of α, we have variation in the values of γ.
As a consequence, it is our expectation that this model will fail in retrieving the
intra-respondent component of heterogeneity.

7It would be possible, in principle, to use different draws of γ for each draw of α, with γr,k,t,n
replacing γk,t,n. However, doing so creates an even greater computational burden by increasing
the number of draws for respondent n from R+K Tn to RK Tn.
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An alternative approach is to simulate each choice probability separately but
to use the same draws of α in all the choices by a given consumer. This approach
is analogous to Equation 9 above but adapted for intra-personal variation in
tastes. The objective function is

SLL =

N∑
n=1

Tn∑
t=1

ln

[
1

R

R∑
r=1

(Pn,t (jn,t | αr,n, γr,t,n))

]
. (13)

This approach carries out all simulation at the level of individual choices, but the
same draws of α are reused across choices for the same consumer. For γ, new
draws are used in each choice situation. The use of the same draws of α across
choices is intended to provide some identification of the intra-personal variation
relative to inter-personal. However, as the number of draws rises, Equation 13 be-
comes simply a cross-sectional estimator in which the two forms of heterogeneity
are not distinguished.

Given the high computational cost of estimating models based on Equation 11
with large K, the use of equations 12 and 13 could potentially lead to significant
savings. However, the accuracy of these alternatives is unknown. This issue
is set to become even more important as new model structures are developed
that allow for increasingly complex patterns of heterogeneity. For example, the
model developed by Cherchi et al. (2009) allows such a complex patterns of
heterogeneity that the authors utilise an approach to estimation in which all
averaging is performed at the level of individual consumers, drawing parallels
with Equation 13.

In the present paper, we do not attempt to derive the asymptotic properties
of the three estimators described in this section, but this remains a crucial area
for future work. We do however postulate that both approximations will struggle
in differentiating between the two types of heterogeneity. Equation 12 will face
difficulties in retrieving intra-respondent heterogeneity, while Equation 13 will
have issues with inter-respondent heterogeneity.

As in Section 2.2, we now briefly compare the three specifications discussed in
this Section. The simulated log-likelihood in Equation 11 recognises that part of
the taste heterogeneity is across (rather than within) respondents by calculating
the probability for the entire sequence of choices for a single value of α before
averaging across draws. However, to accommodate the additional heterogeneity
within the sequence of choices, the probability for a single choice conditional
on a given draw from α is itself obtained by simulating across the distribution
for γ. In other words, while the averaging across draws from α takes place at
the level of an individual respondent, the averaging across draws from γ takes
place at the level of a single observation. On the other hand, in Equation 12, we
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do not simulate across the distribution of γ conditional on a given value for α,
but simulate jointly across the distributions for α and γ, albeit with associating
different draws from γ with the draws from α for different observations. Finally,
in Equation 13, we again simulate jointly across the distributions for α and γ,
but do it separately for each choice task, while reusing the same draws from α
across the observations for a given individual.

3 Empirical framework

To test the ability of different methods to capture the true heterogeneity in
a dataset, we constructed a variety of true data generation processes, simu-
lated datasets under these situations, and applied the estimation methods to the
datasets. Each choice situation consists of two alternatives with two attributes
for each alternative, namely travel time (in minutes) and travel cost (in £). The
underlying data comes from an experimental design with 50 rows, with 5 blocks
of 10 choices each. On the basis of this design, we simulated datasets with up
to 5, 000 choice situations. For the cross-sectional datasets, we assigned a single
choice situation to each consumer. For the panel datasets, we assigned an entire
block of 10 choice situations to each consumer.

3.1 Case studies

We define four different “case studies” that incorporate different types of het-
erogeneity in the sensitivities to travel time and travel cost. Each of these case
studies includes several “versions” that differ in the degree of its type of het-
erogeneity. Sample size is specified to range from 100 to 5,000 choice situations
(using 12 different sample sizes). For each sample size of each versions of each
case study, ten different datasets were generated. Estimation was conducted on
each dataset by several relevant methods. The average over the ten datasets of
the comparison between estimates and true parameters provides information on
the bias, if any, in the estimator. The root means squared error between the
estimates and the true parameters provides information on the efficiency of each
estimator.

We will now describe the four case studies, with an overview given in Table
1. We use the notation βT for the time coefficient an βC for the cost coefficient,
with the specification of these coefficients differing over case studies. In all case
studies, the data generation and estimation include a constant for the cheaper of
the two alternatives, with a true value of 1.
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3.1.1 Case Study 1

This case study specifies a single random coefficient, namely the time coefficient
βT, with the travel cost coefficient βC being fixed to a value of −1. The time
coefficient is specified to have a mean of 0.2, which is labelled µ. Three different
versions are specified that differ in the standard deviation of the travel cost coef-
ficient (i.e., the degree of heterogeneity). The standard deviation, labelled σ, is
set to 0.05, 0.1, and 0.2 in the three versions, respectively, which implies that the
coefficient of variation (cv = σ/µ) is 0.25, 0.5, and 1, respectively. For this case
study, two different types of data were produced. Cross-sectional datasets were
generated with only one choice situation per consumer, while panel datasets were
generated with ten choice situations per consumer.

3.1.2 Case Study 2

The second case study specifies heterogeneity in both the time and cost coeffi-
cients, with three different levels of heterogeneity for each coefficient (cv of 0.25,
0.5, and 1), giving rise to nine possible combinations. In addition, two levels
of correlation between the time and cost coefficients are considered, namely, no
correlation and a correlation of −0.5, giving rise to a total of 18 versions of this
case study. Cross-sectional and panel datasets are created in the same way as for
case study 1.

3.1.3 Case Study 3

The third case study incorporates heterogeneity only in the time coefficient, but
specifies two layers of heterogeneity: inter- and intra-personal variation. The
time coefficient consists of (i) a component that varies over consumers only, with
a standard deviation of 0.05, 0.1 or 0.2 (cv of 0.25, 0.5, or 1) and (ii) a component
that varies of over choice situations for each consumer, with a standard deviation
of 0.025, 0.05, or 0.1 (cv of 0.125, 0.25, or 0.75). Combining each of the levels
gives nine versions of this case study. Since the two layers of variation cannot be
expected to be identified in cross-sectional data, only panel datasets are created
for this case study.

3.1.4 Group 4 case study

The final case study incorporates inter- and intra-personal heterogeneity for both
the time and cost coefficients. Given the high computational cost of estimating
models under this specification, only a single version was specified. For this one
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version, the coefficient of inter-personal variation is set at 0.5 for the time co-
efficient and 0.625 for the cost coefficient, and the coefficient of intra-personal
variation is set at 0.25 for the time coefficient and 0.375 for the cost coefficient.
Also, we specify a correlation of −0.5 between the two coefficients at the level of
inter-personal variation, with no correlation between the intra-personal compo-
nents. As with case study 3, only panel datasets are generated.

3.2 Estimation

Halton draws (Halton, 1960) were used for the simulation that is required in
estimation. After extensive pre-testing, we utilised R = 200 draws 8. All models
were coded and estimated in Ox 4.1 (Doornik, 2001).

Different estimation procedures were used in the different case studies. The
lettering in the following chart (ie. A, B, etc.) is used to refer to the methods
when we report results in the next section. We gently suggest that the reader
retain this chart when reading the remainder of the paper.

• Case studies 1 and 2:

– On the panel datasets, we applied the three approaches given in Section
2.2, namely:

∗ (A) equation 6, which is the standard maximum simulated likeli-
hood approach for panel data with inter-personal heterogeneity,

∗ (B) equation 8, which treats the data as if they were cross-sectional,
and

∗ (C) equation 9, which is like B except that the same draws are
used for all the choices of a consumer.

– On the cross-sectional datasets, we applied:

∗ (D) equation 3, which is the standard simulated likelihood func-
tion for cross-sectional data.

• In case studies 3 and 4, we applied the three procedures in Section 2.3,
namely:

– (E) equation 11, which uses K draws of the intra-personal component
(γ) along with R draws of the inter-personal component (α), where
K = R, and with each draw from γ being used with each draw from
α,

8The number of draws was increased up to 10, 000 draws, but no changes in results were
observed beyond about 100 draws. To keep estimation times manageable in the face of the large
number of models (16, 080 in total), we settled on R = 200.
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– (F) equation 12, which utilises one draw of the intra-personal compo-
nent for each of the R draws of the inter-personal component, and

– (G) equation 13, which is similar to C in that it treats the data as if
they were cross-sectional but uses the same draws for the inter-personal
component across all the choices of a consumer.

The estimation was performed on each of ten datasets, for each version of each
case study, and for each sample size – giving a total of 16, 080 models that were
estimated. The next section discusses the results of these estimations.

4 Results

Given the number of estimations, it is clearly impossible to present detailed results
for each. We have taken several steps to reduce the informational burden and yet
meaningfully represent the findings. In particular, we focus on the coefficient of
variation cv, which measures the degree of heterogeneity, and, when applicable,
the correlation between the time and cost coefficients. In any one estimation, the
estimates are compared to the true value in the simulated dataset9. The mean
error (ME, where the error is the estimate minus the true value) over the ten
datasets is calculated, as well as the root mean squared error (RMSE). The ME
provides an indication of bias, and the RMSE provides a measure of the standard
deviation of the estimates around the true value, which, in the absence of bias,
is a measure of efficiency. We also report the mean adjusted ρ2 and the mean
estimation time across the ten runs. Finally, early experience showed problems
with convergence for some of the methods especially on small samples, and so we
also report the number of out the ten runs that converged.

Even with the above approach to reporting results, we still have 30 versions
across the first three case studies, with 12 different sample sizes and several
estimation methods. As an additional way of producing a more concise overview
of our findings, we present (i) results for all sample sizes for only one version of
each case study, and (ii) results at one sample size (the largest) for all versions
of each case study.

9Since the datasets are samples taken from underlying distributions, the mean and variance
of the random coefficients in the dataset differ from that of the underlying distribution from
which the sample is drawn, especially with small sample sizes. For comparison purposes, we use
the former as the “true” value to avoid this additional sampling noise.
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4.1 Case study 1

The findings for case study 1 are presented in two parts: Table 2 presents the
detailed findings for version 2, which uses a true coefficient of variation of 0.5, at
all sample sizes; while Table 3 reports the results of all versions of this case study
at a sample size of 5, 000 observations.

Recall that both cross-sectional and panel datasets were generated for case
study 1. In the cross-sectional datasets, the number of observations is the number
of sampled consumers, N . In the panel datasets, each consumer faces 10 choice
situations. The number of observations (as defined for the purposed of the tables)
is the number of choice situations, which in our panel datasets is 10N . Therefore,
when the tables lists the number of observations as, e.g., 100, the number of
sampled consumers in the panel datasets is 10 and in the cross-sectional datasets
is 100.

Consider Table 2 first. Each part of the table provides results for a different
statistic, e.g, ME of the estimated cv in the top-left part, and RMSE in the
top-right. In each part, there are columns that correspond to the estimation
methods enumerated in Section 3.2 above. In particular, the first column, labelled
A, gives results for the maximum simulated likelihood estimator on the panel
datasets. The second and third columns, labelled B and C, give results for the
two simplifications on panel datasets. The last column, labelled D, gives the
results of maximum simulated likelihood on the cross-sectional datasets. The
dotted line before the last column is intended to reinforce the distinction that
the estimates for the last column are obtained on different datasets (the cross-
sectional datasets) than the estimates for the other columns (the panel datasets).

We observe essentially no bias in estimating the coefficient of variation using
any of the three estimation procedures on the panel data (A, B, and C) when
using the largest sample (the last row). A closer inspection of the results across
the 12 different sample sizes however indicates that methods B and C require
larger samples than method A in order to achieve relatively low levels of bias.
The greater efficiency of A is evidenced in the RMSE results, which show much
lower variation across the ten runs when using A as opposed to B or C. The only
exception to this relation is with a sample size of 100, which would equate to only
10 consumers.

The model fit is uniformly better with A than B or C. Convergence problems
are observed for B and C at the two smallest sample sizes, which do not occur
with A, and A obtains slightly shorter estimation times than B or C. These results
regarding convergence rates and estimation times contradict the occasionally held
view that the more complex derivatives of the likelihood for A relative to B and
C can hamper estimation.
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Our findings suggest that method B, which is consistent (when identified),
provides fairly unbiased estimates except in small samples. However, its loss in
efficiency is non-trivial, even with large samples: the RMSE is 5 times greater with
B than A at the largest sample size. Interestingly, method C produces exactly
the same results as B, confirming the conjecture (discussed above) that the two
methods should be similar when estimated with a sufficiently large number of
draws, and showing that any attempt with C to regain some of the efficiency lost
when moving from A to B is not particularly effective.

It is also of interest to look at the results for the cross-sectional datasets,
using method D, which is the maximum likelihood estimator for these data. We
observe that the ME is fairly large even with large samples, and that the RMSE is
larger for all sample sizes than with maximum likelihood on panel data (method
A). These results re-enforce the discussion above that taste heterogeneity is more
difficult to identify on cross-sectional data than panel data.

These findings are confirmed by the results for all versions of the case study,
given in Table 3. All three estimation methods on the panel data produce little
bias10, with method A obtaining the lowest RMSE. There is again essentially no
difference between B and C, and the estimation on cross-sectional data (method
D) again results in a fairly large ME and RMSE. There is also evidence that the
difficulties with B and C (as well as D) are more accentuated when working with
higher levels of heterogeneity.

4.2 Case study 2

We now turn our attention to the results of the second case study, which incorpo-
rates heterogeneity for both coefficients. Table 4 presents results for version 5 of
this case study, in which the coefficients are not correlated and each has a coef-
ficient of variation of 0.5. The corresponding results with correlated coefficients,
which is version 14, are shown in Table 5.

Looking first at the case with uncorrelated coefficients, we see more fluctu-
ation in ME with increasing sample size than was the case when working with
a single random coefficients. Nevertheless, method A clearly exhibits less bias
than methods B and C, or than D on cross-sectional data. Interestingly, D (on
the cross-sectional data) obtains lower ME than A (on panel data) for the cost
heterogeneity but higher ME for the time heterogeneity; and D exhibits greater
variation across runs for both cost and time heterogeneity. Method A maintains
its estimation-time and model-fit advantages. In addition, we now observe more

10The slightly larger ME for method A on version 3 is negligible when looking at the RMSE
findings.
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problems with convergence for the remaining methods than was the case with a
single random coefficient.

These findings are also supported by the results for all nine uncorrelated
versions reported in Table 6. We observe non-negligible bias for B and C in
some settings, especially for βT, with similar problems for D. There are also clear
advantages for method A in terms of stability across runs, as well as model fit
and estimation time. The differences across methods are once again especially
noticeable in those cases where we have high true levels of heterogeneity. In both
Table 4 and Table 6, we observe a small estimation time advantage for C over
B, which can possibly be linked to the use of a smaller set of draws (N R rather
than N T R), requiring less initial setup time.

Turning our attention to the case with correlation between the cost and time
coefficients, the results (Table 5) for version 14 show, as above, less bias and
greater efficiency for A than B and C. However, a number of additional obser-
vations can be made. All three models show problems with retrieving the true
level of correlation, although this is less severe for A. Also, while C performs
well for the heterogeneity in the time coefficient with the full sample size, this
value seems to be an outlier (when compared to other sample sizes), and per-
formance especially for the cost coefficient is in fact inferior to B. The problems
with convergence also increase in severity for B and C, and we again observe the
above-mentioned differences in model fit and estimation times. Method D on
cross-sectional data seems to perform better than method B on the panel data,
but problems with recovering the true patterns of heterogeneity remain.

Table 7 gives results for all versions with correlated coefficients and the largest
sample size. The results evidence superior performance by method A, especially
with high levels of heterogeneity. Also, while there are cases where C performs
better than B for βT, this is usually accompanied by greater error for βC, and
there is thus no conclusive evidence that C produces less bias or attains a greater
efficiency than B.

4.3 Case study 3

Table 8 presents the detailed results for version 5 of the third case study, where
we now have both inter-personal (cv = 0.5) and intra-personal (cv = 0.25) het-
erogeneity in the time coefficient. Methods E and G evidence little bias in either
type of heterogeneity. In contrast, method F exhibits considerable bias in the
intra-personal heterogeneity while remaining fairly unbiased for inter-personal
heterogeneity. The RMSE’s are lowest for method E. For method F, they are
only slightly higher for the inter-personal heterogeneity, but much higher for
intra-personal heterogeneity. For method G, the opposite is the case.
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We observe only small problems with model convergence at small sample sizes.
In terms of fit, methods E and F obtain higher values than method G. In terms
of estimation times, the main observation however relates to the massively higher
estimation times for method E, which takes over 200 times as long as the others,
which is a direct result of the large number of logit calculations.

As discussed in section 2.3, method E requires RKT logit calculations for
consumer n, while methods F and G require RTn logit calculations. The questions
arises: does the superior performance of E arise simply because of a larger number
of logit calculations (i.e., effectively more draws in simulation), or because of the
difference in the way the logit probabilities are combined in the formula for E
relative to the formulas for F and G? To investigate this issue, we re-applied
methods F and G with R = 40, 000, such that they utilise the same number of
logit calculations as E (which, as stated above, uses R = 200 and K = 200). The
results are given in Table 9. As the table indicates, method F performs essentially
the same with 40, 000 draws as with 200 draws11. In particular, it continues to
estimate essentially no intra-personal variance, even with 40,000 draws. This
result suggests that the problem arises from the formula for F rather than the
number of draws: by using only one draw of intra-personal heterogeneity for each
draw of inter-personal heterogeneity, the estimator seems not able to distinguish
intra-personal heterogeneity. Method G performs worse with 40, 000 draws than
200. Recall that the formula for G treats the choices as if they were cross-
sectional, but uses the same draws of inter-personal variation in all the choices
for a given consumer. We conjectured that this use of common draws creates
correlation over choices that serves to identify the two types of heterogeneity,
but that the differentiation diminishes as the number of draws rises, since the
exact (unsimulated) probabilities are independent over choices in this formula.
The results in Table 9 are consistent with this conjecture and show, the same as
for method F, that the degraded performance of G relative to E is due to G’s
formulation rather than the number of draws.

We return now to our original implementation of F and G with R = 200. The
findings for all versions of case study 3 are given in Table 10. The results indicate
that method E performs well in all versions. Method G performs well in version
4 but not the other versions. And method F seems, as noted above, capable
of estimating inter-personal, but not intra-personal heterogeneity, although some
problems for inter-personal heterogeneity are also observed in versions 8 and 9. In
summary, method F performs well for inter-personal heterogeneity, while method
G performs well for intra-personal heterogeneity. Only method E performs well

11The performance improves in the 4th decimal place for inter-respondent heterogeneity, and
gets worse in the 4th decimal for intra-respondent heterogeneity.
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for both types of heterogeneity.

4.4 Case study 4

The results for the single case study in group 4 are shown in Table 11 and Table
12, based on data generated with inter- and intra-personal heterogeneity in both
the time and cost coefficients, with a correlation of −0.5 between the coefficients
for the inter-personal component. Method E performs well for both types of
heterogeneity for both coefficients, as well as in the correlations. This finding is
useful, since it shows that fairly complex patterns of heterogeneity can be cap-
tured by this method, albeit at a high computational cost. Method F, as before,
performs well for inter-personal variation but not for inter-personal variation.
And Method G performs relatively poorly in all regards. Apparently, its good
performance in version 5 of case study 3 was an aberration, since the accuracy
in that instance is not evidenced in other versions of that case study nor in the
current case study. In addition, as shown Table 12, in method G encountered
convergence problems in a large number of datasets.

The overall conclusion seems to be that method E is clearly superior to the
others if computer time is not a binding constraint on the researcher. If shorter
run times are necessary, then it might be tempting to use method F, as it seems
preferable to G when considering bias, efficiency and convergence combined. How-
ever, the shorter run times with method F come at a substantial lost of accuracy
relative to method E, so such a shortcut is not advisable.

5 Conclusions

This paper has examined the issue of estimating the true patterns of heterogeneity
across consumers as well as across choice situations for a given consumer. This
topic is of great interest given the growing reliance on mixed logit models in
transportation and other fields. Despite some results in terms of theoretical
properties of the different models, little is known about their ability to retrieve
the true patterns of heterogeneity in the data. Additionally, with increasing
interest in structures allowing for complex patterns of heterogeneity, such as
joint inter-respondent and intra-respondent variation, there is a temptation to
use computationally attractive approximations, such as in Cherchi et al. (2009)
and Yáñez et al. (2011), or indeed in Paag et al. (2001) for the case of inter-
respondent heterogeneity only. Worryingly, the qualities of these approximations
are unknown, and the results from the present paper should serve to stop their
use before they become more widely used. Alongside discussing the theoretical
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properties of a number of estimators, the main aim of this paper was to compare
the performance of different specifications in a large scale simulated data study.

With the wealth of results presented across case studies, a summary of the
observations seems appropriate. Firstly, retrieving the true patterns of hetero-
geneity is found to be considerably less precise on cross-sectional data than on
panel data, even with large sample sizes, which confirms the value of having
multiple choices per consumer. When such repeated choices are available, a dis-
tinction needs to be made between cases with inter-personal variation only, and
cases with additional intra-respondent heterogeneity. With inter-personal varia-
tion only, maximum simulated likelihood (method A) performs well, as expected.
However, we found fairly large RMSE and bias in some cases with small samples
sizes, which points to the value of larger samples – larger perhaps than are typi-
cally used for mixed logit estimation. It seems that treating the panel data as if
they were cross-sectional (method B) results in fairly accurate estimates provided
that the sample size is sufficiently high (and that the parameters are identified by
cross-sectional data, as in our study). The performance depended on the presence
of one or two random coefficients as well as the actual degree of heterogeneity.
There is of course a loss of efficiency, which we found to be as large as a factor of
four or five. Treating the panel data as if they were cross-sectional but simulating
with common draws for each consumer (method C) performs the same as method
B, as we had conjectured: the added complication of using of common draws has
no meaningful effect, given that the data are treated as cross-sectional. With
intra- and inter-personal variation, maximum likelihood with extensive simula-
tion at each level (method E) performs well, as expected, but run times are very
high. While appealing from a computational perspective, the two simplifications
that have been proposed (methods F and G) do not reach anywhere near the
level of accuracy, especially for the intra-personal heterogeneity.

The three main findings from the paper can be summarised succinctly as fol-
lows. Firstly, the data requirements of mixed logit models are substantial, and
the small sample issues are arguably more important than is commonly assumed.
Secondly, the availability of multiple observations per respondents greatly facil-
itates the study of taste heterogeneity. Thirdly, to guarantee recovery of the
true patterns of heterogeneity, analysts should make use of the correct specifica-
tion of the (simulated) log-likelihood function and avoid any shortcuts, however
computationally attractive they may me.
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Table 1: Settings used for coefficients in data generation

Case Study 1 (10 replications of simulated data for each version)
βT

Version µ σ cv βC
1 -0.2 0.05 0.25 -1
2 -0.2 0.1 0.5 -1
3 -0.2 0.2 1 -1

Case Study 2 (10 replications of simulated data for each version)

βT βC corr. (βT, βC)
Version µ σ cv µ σ cv 1− 9 10− 18
1&10 -0.2 0.05 0.25 -1 0.25 0.25 0 -0.5
2&11 -0.2 0.1 0.5 -1 0.25 0.25 0 -0.5
3&12 -0.2 0.2 1 -1 0.25 0.25 0 -0.5
4&13 -0.2 0.05 0.25 -1 0.5 0.5 0 -0.5
5&14 -0.2 0.1 0.5 -1 0.5 0.5 0 -0.5
6&15 -0.2 0.2 1 -1 0.5 0.5 0 -0.5
7&16 -0.2 0.05 0.25 -1 1 1 0 -0.5
8&17 -0.2 0.1 0.5 -1 1 1 0 -0.5
9&18 -0.2 0.2 1 -1 1 1 0 -0.5

Case Study 3 (10 replications of simulated data for each version)
βT

Version µ σ γ cv (inter) cv (intra) βC
1 -0.2 0.05 0.025 0.25 0.125 -1
2 -0.2 0.1 0.025 0.5 0.125 -1
3 -0.2 0.2 0.025 1 0.125 -1
4 -0.2 0.05 0.05 0.25 0.25 -1
5 -0.2 0.1 0.05 0.5 0.25 -1
6 -0.2 0.2 0.05 1 0.25 -1
7 -0.2 0.05 0.15 0.25 0.75 -1
8 -0.2 0.1 0.15 0.5 0.75 -1
9 -0.2 0.2 0.15 1 0.75 -1

Case Study 4 (10 replications of simulated data)
βT corr. (βT, βC)

µ σ γ cv (inter) cv (intra) inter intra
-0.2 0.1 0.05 0.5 0.25 -0.5 0

βC
µ σ γ cv (inter) cv (intra)
-1 0.625 0.375 0.625 0.375



Table 2: Detailed estimation results for version 2 of case study 1

ME(cv) RMSE(cv)
Obs. A B C D A B C D

100 0.44 -0.34 -0.27 -0.07 0.85 0.44 0.45 0.37
200 0.17 -0.15 -0.15 -0.10 0.28 0.41 0.42 0.32
300 0.10 -0.14 -0.15 -0.17 0.18 0.35 0.35 0.31
400 0.08 -0.09 -0.08 -0.16 0.18 0.43 0.44 0.29
500 0.05 -0.07 -0.07 -0.21 0.15 0.48 0.47 0.36
750 -0.01 0.08 0.08 -0.03 0.09 0.22 0.23 0.24

1,000 0.01 0.16 0.16 0.05 0.07 0.28 0.28 0.17
1,500 0.00 0.09 0.09 -0.10 0.05 0.16 0.16 0.21
2,000 0.01 0.12 0.12 -0.12 0.05 0.15 0.15 0.18
3,000 0.02 0.10 0.09 -0.06 0.03 0.15 0.15 0.13
4,000 0.01 0.06 0.06 -0.06 0.02 0.14 0.13 0.11
5,000 0.00 0.01 0.01 -0.05 0.02 0.10 0.10 0.09

Runs converged Mean adj. ρ2

Obs. A B C D A B C D

100 10 8 8 7 0.32 0.26 0.27 0.30
200 10 9 9 8 0.31 0.23 0.23 0.27
300 10 10 10 10 0.33 0.27 0.27 0.30
400 10 10 10 10 0.34 0.28 0.28 0.30
500 10 10 10 10 0.35 0.28 0.28 0.30
750 10 10 10 10 0.36 0.30 0.30 0.31

1,000 10 10 10 10 0.35 0.30 0.30 0.31
1,500 10 10 10 10 0.36 0.30 0.30 0.32
2,000 10 10 10 10 0.36 0.30 0.30 0.31
3,000 10 10 10 10 0.36 0.30 0.30 0.31
4,000 10 10 10 10 0.36 0.31 0.31 0.31
5,000 10 10 10 10 0.37 0.31 0.31 0.31

Mean est. time (s)
Obs. A B C D

100 1 1 1 1
200 1 2 2 2
300 2 3 2 3
400 3 4 4 4
500 3 5 5 4
750 5 7 8 7

1,000 6 10 9 9
1,500 10 14 14 15
2,000 13 19 19 20
3,000 20 30 29 31
4,000 27 39 38 40
5,000 34 48 47 50



Table 3: Summary estimation results for all versions of case study 1, with 5, 000
observations each

ME(cv) RMSE(cv)
Version A B C D A B C D

1 0.00 -0.03 -0.03 -0.03 0.02 0.11 0.11 0.08
2 0.00 0.01 0.01 -0.05 0.02 0.10 0.10 0.09
3 -0.02 0.01 0.01 -0.09 0.04 0.21 0.21 0.14

Mean adj. ρ2 Mean est. time (s)
Version A B C D A B C D

1 0.36 0.35 0.35 0.35 32 46 43 45
2 0.37 0.31 0.31 0.31 34 48 47 50
3 0.42 0.25 0.25 0.25 37 51 49 52

Runs converged
Version A B C D

1 10 10 10 10
2 10 10 10 10
3 10 10 10 10



Table 4: Detailed estimation results for version 5 of case study 2

ME(cvT) ME(cvC)
Obs. A B C D A B C D

100 0.10 -0.51 -0.44 -0.15 0.62 0.34 0.08 0.11
200 0.16 0.03 0.28 0.00 0.15 -0.02 0.04 0.17
300 0.01 -0.42 -0.43 0.08 0.11 0.09 0.00 0.15
400 -0.02 -0.16 -0.12 -0.14 0.06 -0.02 0.02 0.08
500 0.00 -0.32 -0.17 -0.33 0.07 -0.14 -0.04 0.05
750 -0.04 -0.21 -0.25 -0.21 0.02 -0.10 -0.11 0.01

1,000 -0.03 0.00 -0.03 0.00 0.03 -0.14 -0.14 0.06
1,500 -0.02 0.09 0.08 -0.22 0.07 -0.08 -0.07 -0.02
2,000 -0.01 0.09 0.11 -0.28 0.04 -0.04 0.02 -0.05
3,000 0.02 0.14 0.15 -0.16 0.02 0.05 0.07 -0.06
4,000 0.01 0.04 0.05 -0.09 0.02 0.04 0.05 0.00
5,000 0.00 -0.05 -0.04 -0.08 0.02 -0.11 0.00 0.01

RMSE(cvT) RMSE(cvC)
Obs. A B C D A B C D

100 0.57 0.51 0.45 0.26 0.91 0.36 0.18 0.20
200 0.31 0.90 1.33 0.35 0.26 0.33 0.38 0.32
300 0.18 0.42 0.43 0.57 0.20 0.39 0.33 0.27
400 0.19 0.85 0.83 0.20 0.15 0.33 0.34 0.24
500 0.15 0.47 0.44 0.34 0.14 0.37 0.32 0.18
750 0.11 0.33 0.30 0.25 0.09 0.28 0.23 0.14

1,000 0.08 0.21 0.24 0.19 0.06 0.27 0.27 0.12
1,500 0.06 0.19 0.17 0.28 0.08 0.27 0.22 0.17
2,000 0.05 0.14 0.18 0.30 0.06 0.25 0.14 0.18
3,000 0.05 0.19 0.20 0.23 0.04 0.11 0.10 0.17
4,000 0.04 0.16 0.15 0.14 0.04 0.08 0.07 0.09
5,000 0.04 0.17 0.15 0.11 0.04 0.23 0.06 0.07

Runs converged Mean adj. ρ2 Mean est. time (s)
Obs. A B C D A B C D A B C D

100 10 2 2 3 0.32 0.20 0.14 0.29 1 2 2 2
200 10 9 9 8 0.30 0.13 0.13 0.25 2 3 3 5
300 10 8 7 6 0.29 0.14 0.14 0.26 3 5 4 6
400 10 9 10 8 0.31 0.18 0.18 0.26 4 7 7 7
500 10 9 10 9 0.31 0.18 0.18 0.27 6 7 9 8
750 10 10 9 9 0.31 0.20 0.20 0.29 8 13 12 14

1,000 10 9 9 10 0.31 0.19 0.19 0.28 10 20 17 20
1,500 10 10 9 10 0.32 0.19 0.19 0.29 16 28 27 24
2,000 10 10 10 10 0.33 0.20 0.20 0.29 22 37 38 34
3,000 10 10 10 10 0.33 0.20 0.20 0.28 33 65 57 54
4,000 10 10 10 10 0.33 0.21 0.21 0.29 41 92 67 69
5,000 10 10 10 10 0.33 0.22 0.22 0.29 49 92 82 92



Table 5: Detailed estimation results version 14 of case study 2

ME(cvT) ME(cvC) ME(corr.)
Obs. A B C D A B C D A B C D

100 0.06 0.18 -0.23 -0.40 0.55 0.18 -0.53 -0.22 1.45 1.25 0.84 0.95
200 0.16 0.60 1.64 0.02 0.12 0.17 0.11 0.15 1.59 1.20 1.22 1.04
300 -0.04 8.52 -0.12 0.03 0.08 0.03 0.25 -0.17 0.24 0.75 0.82 0.89
400 0.06 3.21 17.36 -0.12 0.05 0.16 0.10 -0.13 0.93 0.43 0.77 0.75
500 0.04 -0.16 0.09 -0.21 0.05 0.04 0.03 -0.05 0.03 0.44 -0.30 0.35
750 -0.05 -0.08 -0.12 -0.15 -0.01 -0.17 -0.19 -0.19 -0.24 0.31 -0.20 1.05

1,000 -0.05 0.06 0.12 0.02 -0.01 -0.11 -0.17 -0.07 -0.15 0.70 -0.18 1.27
1,500 -0.04 0.05 0.07 -0.19 0.02 -0.11 -0.13 -0.23 0.07 0.26 -0.27 0.43
2,000 -0.02 0.06 0.10 -0.24 0.00 -0.10 -0.18 -0.08 -0.23 0.05 -0.03 0.50
3,000 0.00 0.09 0.15 -0.14 -0.03 -0.12 -0.23 -0.13 -0.18 -0.03 0.08 -0.14
4,000 -0.02 -0.05 0.07 -0.11 -0.02 -0.08 -0.32 -0.09 -0.14 0.42 0.27 0.11
5,000 -0.04 -0.10 -0.03 -0.10 0.01 -0.17 -0.30 -0.16 -0.12 0.23 0.22 -0.02

RMSE(cvT) RMSE(cvC) RMSE(corr.)
Obs. A B C D A B C D A B C D

100 0.45 0.54 0.23 0.40 0.76 0.71 0.53 0.22 1.55 1.38 0.84 0.95
200 0.45 2.07 3.99 0.21 0.33 0.48 0.39 0.44 1.60 1.46 1.40 1.29
300 0.21 24.59 0.34 0.26 0.27 0.34 0.60 0.22 0.87 1.09 1.15 1.08
400 0.29 10.54 50.11 0.15 0.25 0.46 0.45 0.20 1.15 0.95 1.06 0.97
500 0.26 0.46 0.79 0.31 0.20 0.47 0.47 0.26 0.58 0.95 0.34 0.77
750 0.18 0.34 0.32 0.22 0.12 0.25 0.26 0.24 0.38 0.92 0.40 1.12

1,000 0.13 0.22 0.37 0.12 0.08 0.22 0.24 0.16 0.59 1.16 0.65 1.36
1,500 0.10 0.16 0.15 0.25 0.06 0.23 0.24 0.29 0.68 0.93 0.48 0.72
2,000 0.08 0.16 0.16 0.26 0.07 0.21 0.26 0.12 0.41 0.73 0.50 0.96
3,000 0.07 0.17 0.21 0.18 0.06 0.24 0.31 0.14 0.34 0.62 0.44 0.49
4,000 0.06 0.14 0.15 0.16 0.04 0.17 0.34 0.14 0.30 0.98 0.38 0.70
5,000 0.07 0.15 0.12 0.13 0.03 0.25 0.32 0.20 0.27 0.74 0.34 0.47

Runs converged Mean adj. ρ2 Mean est. time (s)
Obs. A B C D A B C D A B C D

100 10 2 1 1 0.38 0.11 0.07 0.31 2 3 2 4
200 10 8 6 5 0.32 0.08 0.08 0.18 3 5 5 5
300 10 8 7 3 0.31 0.11 0.11 0.17 4 8 8 8
400 10 9 8 6 0.33 0.15 0.14 0.18 6 11 9 10
500 10 8 9 9 0.34 0.16 0.15 0.19 8 11 13 12
750 10 8 9 8 0.33 0.18 0.18 0.22 11 19 20 21

1,000 10 8 8 7 0.34 0.18 0.18 0.20 15 27 28 29
1,500 10 9 10 10 0.35 0.17 0.17 0.21 23 49 41 44
2,000 10 10 10 10 0.34 0.18 0.18 0.21 32 56 60 50
3,000 10 10 10 10 0.35 0.18 0.18 0.21 51 89 98 75
4,000 10 10 9 10 0.35 0.19 0.19 0.21 66 112 118 108
5,000 10 10 10 10 0.35 0.20 0.20 0.21 80 135 141 137



Table 6: Summary estimation results for all versions of case study 2 with uncor-
related coefficients, with 5, 000 observations

ME(cvT) ME(cvC)
Version A B C D A B C D

1 0.00 -0.03 -0.02 -0.05 0.02 -0.09 0.00 0.01
2 0.00 -0.02 -0.02 -0.06 0.02 -0.03 -0.01 0.02
3 -0.01 -0.02 0.00 -0.11 0.03 -0.17 0.02 -0.04
4 0.00 -0.02 -0.03 -0.06 0.01 -0.02 -0.01 -0.04
5 0.00 -0.05 -0.04 -0.08 0.02 -0.11 0.00 0.01
6 -0.02 -0.11 -0.07 -0.11 0.03 -0.11 0.03 0.02
7 -0.04 -0.16 -0.17 -0.03 0.01 -0.05 -0.05 -0.05
8 0.00 -0.25 -0.26 -0.08 0.01 -0.10 -0.10 -0.03
9 -0.06 -0.27 -0.21 -0.25 0.06 -0.08 -0.05 0.02

RMSE(cvT) RMSE(cvC)
Version A B C D A B C D

1 0.04 0.10 0.08 0.12 0.04 0.15 0.09 0.08
2 0.03 0.08 0.09 0.11 0.03 0.12 0.12 0.07
3 0.06 0.14 0.13 0.17 0.05 0.20 0.11 0.15
4 0.04 0.12 0.13 0.15 0.03 0.07 0.06 0.16
5 0.04 0.17 0.15 0.11 0.04 0.23 0.06 0.07
6 0.06 0.19 0.16 0.19 0.05 0.22 0.09 0.10
7 0.07 0.18 0.18 0.15 0.04 0.08 0.08 0.07
8 0.04 0.29 0.29 0.18 0.05 0.15 0.14 0.08
9 0.10 0.41 0.40 0.29 0.11 0.15 0.13 0.10

Runs converged Mean adj. ρ2 Mean est. time (s)
Version A B C D A B C D A B C D

1 10 10 10 10 0.33 0.31 0.31 0.32 50 85 86 95
2 10 10 10 10 0.35 0.28 0.28 0.29 51 92 82 91
3 10 10 10 10 0.41 0.22 0.22 0.23 58 74 86 87
4 10 10 10 10 0.31 0.24 0.24 0.26 52 98 79 86
5 10 10 10 10 0.33 0.22 0.22 0.24 49 92 82 92
6 10 10 10 10 0.39 0.18 0.18 0.20 56 101 90 105
7 10 10 10 10 0.35 0.13 0.13 0.15 55 94 81 99
8 10 10 10 10 0.36 0.12 0.12 0.14 54 97 76 104
9 10 10 10 7 0.40 0.10 0.10 0.12 58 114 87 107



Table 7: Summary estimation results for all versions of case study 2 with corre-
lated coefficients, with 5, 000 observations

ME(cvT) ME(cvC) ME(corr.)
Version A B C D A B C D A B C D

10 -0.01 0.01 0.03 0.00 0.00 -0.10 -0.16 -0.05 0.16 0.27 0.48 0.15
11 -0.01 -0.02 0.03 -0.08 0.01 -0.08 -0.13 -0.08 -0.09 1.24 0.40 1.16
12 -0.03 -0.04 0.02 -0.12 0.01 -0.09 -0.10 -0.09 -0.12 0.26 0.08 0.18
13 -0.04 -0.02 0.05 -0.03 0.00 -0.08 -0.24 -0.14 0.02 0.32 0.42 0.31
14 -0.04 -0.10 -0.03 -0.10 0.01 -0.17 -0.30 -0.16 -0.12 0.23 0.22 -0.02
15 -0.04 -0.16 -0.07 -0.17 0.02 -0.09 -0.28 -0.14 -0.03 0.10 0.13 -0.18
16 -0.07 -0.05 -0.02 0.08 0.00 -0.33 -0.54 -0.36 -0.16 0.22 0.25 -0.11
17 -0.03 -0.18 -0.15 -0.02 -0.02 -0.40 -0.53 -0.37 -0.10 0.07 0.05 -0.08
18 -0.01 -0.21 0.02 -0.37 -0.01 -0.26 -0.48 -0.12 -0.01 -0.22 -0.01 -0.15

RMSE(cvT) RMSE(cvC) RMSE(corr.)
Version A B C D A B C D A B C D

10 0.05 0.08 0.09 0.12 0.03 0.13 0.18 0.09 0.59 0.74 0.62 0.70
11 0.04 0.09 0.11 0.12 0.05 0.11 0.14 0.11 0.30 1.32 0.60 1.21
12 0.07 0.14 0.16 0.20 0.06 0.14 0.13 0.12 0.29 0.89 0.47 0.74
13 0.06 0.12 0.12 0.10 0.04 0.15 0.26 0.21 0.66 0.89 0.67 0.79
14 0.07 0.15 0.12 0.13 0.03 0.25 0.32 0.20 0.27 0.74 0.34 0.47
15 0.10 0.22 0.15 0.25 0.05 0.13 0.30 0.20 0.17 0.89 0.28 0.29
16 0.10 0.15 0.16 0.21 0.07 0.48 0.56 0.46 0.60 0.75 0.47 0.35
17 0.06 0.22 0.20 0.18 0.05 0.49 0.55 0.49 0.22 0.59 0.13 0.33
18 0.07 0.32 0.25 0.39 0.08 0.34 0.52 0.25 0.10 0.64 0.18 0.58

Runs converged Mean adj. ρ2 Mean est. time (s)
Version A B C D A B C D A B C D

10 10 10 10 10 0.33 0.30 0.30 0.31 69 127 135 130
11 10 10 10 10 0.35 0.26 0.26 0.27 67 121 131 135
12 10 10 10 10 0.41 0.20 0.20 0.21 78 131 135 136
13 10 10 10 10 0.32 0.23 0.23 0.24 68 122 125 132
14 10 10 10 10 0.35 0.20 0.20 0.21 80 135 141 137
15 10 10 9 9 0.41 0.15 0.16 0.16 82 126 158 163
16 10 10 10 9 0.36 0.12 0.12 0.14 76 140 132 179
17 10 9 9 6 0.39 0.11 0.11 0.12 107 135 124 184
18 10 10 10 9 0.44 0.09 0.09 0.10 87 128 178 146



Table 8: Detailed estimation results for version 5 of case study 3

ME(cvT-inter) ME(cvT-intra)
Obs. E F G E F G
100 0.13 0.02 -0.27 0.06 -0.12 3.81
200 0.11 0.02 -0.38 0.17 -0.17 0.06
300 0.09 0.02 -0.18 0.09 -0.19 0.03
400 0.09 0.03 -0.21 0.05 -0.22 -0.06
500 0.06 0.01 -0.26 -0.01 -0.21 -0.03
750 0.07 0.01 -0.16 0.05 -0.21 0.22

1,000 0.05 -0.01 -0.27 0.08 -0.22 0.32
1,500 -0.01 -0.03 -0.10 -0.04 -0.22 0.11
2,000 0.00 -0.02 -0.01 -0.05 -0.22 0.01
3,000 0.01 -0.01 0.07 -0.05 -0.23 -0.05
4,000 0.01 -0.01 0.03 -0.04 -0.23 -0.05
5,000 0.00 -0.02 -0.04 -0.03 -0.24 0.00

RMSE(cvT-inter) RMSE(cvT-intra)
Obs. E F G E F G
100 0.70 0.49 0.61 0.30 0.14 11.79
200 0.29 0.19 0.42 0.37 0.18 0.19
300 0.25 0.14 0.57 0.36 0.19 0.19
400 0.23 0.16 0.37 0.26 0.22 0.18
500 0.21 0.15 0.33 0.26 0.21 0.15
750 0.19 0.11 0.24 0.24 0.21 0.34

1,000 0.15 0.08 0.35 0.25 0.23 0.40
1,500 0.07 0.06 0.13 0.13 0.22 0.14
2,000 0.06 0.05 0.06 0.13 0.22 0.15
3,000 0.03 0.03 0.12 0.12 0.23 0.13
4,000 0.03 0.02 0.13 0.13 0.23 0.14
5,000 0.02 0.03 0.14 0.11 0.24 0.10

Runs converged Mean adj. ρ2 Mean est. time (s)
Obs. E F G E F G E F G
100 7 10 9 0.30 0.29 0.25 219 1 1
200 10 10 9 0.29 0.29 0.22 389 2 3
300 10 10 10 0.30 0.30 0.26 532 3 5
400 10 10 10 0.32 0.32 0.27 716 4 7
500 10 10 10 0.33 0.33 0.27 887 5 8
750 10 10 10 0.34 0.34 0.29 1,390 8 15

1,000 10 10 10 0.33 0.33 0.29 1,857 10 17
1,500 10 10 10 0.34 0.34 0.29 2,857 16 31
2,000 10 10 10 0.34 0.34 0.29 3,554 21 33
3,000 10 10 10 0.34 0.34 0.29 5,309 32 61
4,000 10 10 10 0.35 0.35 0.30 6,928 41 79
5,000 10 10 10 0.35 0.35 0.30 8,991 52 90



Table 9: Estimation results for methods F and G for version 5 of case study 3:
runs on full sample with R = 200 and R = 40, 000

ME(cvT-inter) ME(cvT-intra)
Draws F G F G

R = 200 -0.02 -0.04 -0.24 0.00
R = 40, 000 -0.02 -0.30 -0.24 0.20

RMSE(cvT-inter) RMSE(cvT-intra)
Draws F G F G

R = 200 0.03 0.14 0.24 0.10
R = 40, 000 0.03 0.33 0.24 0.26

Runs converged Mean adj. ρ2 Mean est. time (s)
Draws F G F G F G

R = 200 10 10 0.35 0.30 52 90
R = 40, 000 10 10 0.35 0.30 12,222 12,245



Table 10: Summary estimation results for all versions of case study 3, with 5, 000
observations

ME(cvT-inter) ME(cvT-intra)
Version E F G E F G

1 0.01 0.00 -0.05 0.02 -0.12 0.02
2 0.00 -0.01 -0.09 0.01 -0.12 0.11
3 0.02 -0.02 -0.22 0.05 -0.11 0.44
4 0.01 0.00 -0.02 -0.03 -0.24 -0.01
5 0.00 -0.02 -0.04 -0.03 -0.24 0.00
6 0.03 -0.04 -0.11 0.04 -0.24 0.13
7 0.01 -0.04 0.34 -0.08 -0.74 -0.42
8 0.00 -0.11 -0.04 -0.08 -0.74 -0.13
9 -0.01 -0.23 -0.21 -0.05 -0.75 -0.02

RMSE(cvT-inter) RMSE(cvT-intra)
Version E F G E F G

1 0.03 0.02 0.14 0.09 0.12 0.09
2 0.02 0.02 0.14 0.11 0.12 0.15
3 0.07 0.04 0.38 0.15 0.11 0.52
4 0.02 0.02 0.11 0.13 0.24 0.08
5 0.02 0.03 0.14 0.11 0.24 0.10
6 0.08 0.05 0.35 0.13 0.24 0.38
7 0.02 0.04 0.39 0.12 0.74 0.48
8 0.03 0.11 0.27 0.13 0.74 0.29
9 0.07 0.23 0.47 0.10 0.75 0.43

Runs converged Mean adj. ρ2 Mean est. time (s)
Version E F G E F G E F G

1 10 10 10 0.35 0.35 0.34 8,503 51 78
2 10 10 10 0.36 0.36 0.31 8,862 52 80
3 10 10 10 0.42 0.42 0.25 9,112 60 93
4 10 10 10 0.34 0.34 0.33 8,633 52 81
5 10 10 10 0.35 0.35 0.30 8,991 52 90
6 10 10 10 0.40 0.40 0.24 8,966 63 92
7 10 10 10 0.27 0.27 0.27 8,490 49 101
8 10 10 10 0.28 0.28 0.26 9,406 48 104
9 10 10 10 0.32 0.31 0.22 9,014 53 96



Table 11: Estimation results for case study 4: part I

ME(cvT-inter) ME(cvT-intra) ME(cvC-inter) ME(cvC-intra)
Obs. E F G E F G E F G E F G
100 1.23 3.53 -0.12 0.28 0.19 -0.02 -0.18 0.23 -0.51 -0.16 -0.15 -0.23
200 0.18 0.03 0.09 0.03 -0.16 0.09 0.06 0.25 -0.26 -0.06 0.04 -0.09
300 -0.05 0.03 -0.34 -0.02 -0.18 -0.06 0.13 0.13 0.15 0.13 -0.05 0.07
400 0.06 0.09 -0.27 -0.11 -0.20 -0.16 0.05 0.06 0.14 0.07 -0.07 0.00
500 0.07 0.07 -0.34 -0.06 -0.22 -0.02 -0.02 -0.02 0.15 0.00 -0.12 0.04
750 0.04 0.03 -0.30 -0.04 -0.21 -0.08 -0.10 -0.09 -0.16 0.01 -0.14 -0.01

1,000 0.02 -0.03 -0.17 -0.08 -0.23 0.00 -0.04 -0.02 -0.07 -0.13 -0.16 0.05
1,500 -0.02 -0.03 -0.15 -0.09 -0.21 -0.03 0.00 0.00 -0.24 -0.04 -0.17 0.16
2,000 -0.05 -0.04 -0.14 -0.12 -0.22 0.10 0.01 0.01 0.00 -0.01 -0.16 0.01
3,000 0.02 0.05 -0.03 -0.12 -0.23 0.05 -0.06 -0.06 0.13 -0.01 -0.20 -0.18
4,000 0.00 0.02 -0.20 -0.09 -0.23 0.23 -0.05 -0.06 0.17 0.01 -0.20 -0.27
5,000 -0.02 -0.01 -0.23 -0.05 -0.24 0.21 -0.03 -0.04 0.07 0.02 -0.18 -0.13

RMSE(cvT-inter) RMSE(cvT-intra) RMSE(cvC-inter) RMSE(cvC-intra)
Obs. E F G E F G E F G E F G
100 2.12 11.18 0.44 0.59 0.81 0.19 0.43 0.41 0.51 0.19 0.21 0.24
200 0.50 0.29 0.89 0.28 0.17 0.38 0.34 0.41 0.44 0.28 0.22 0.19
300 0.26 0.18 0.36 0.16 0.18 0.10 0.31 0.28 0.70 0.28 0.14 0.08
400 0.40 0.34 0.28 0.23 0.21 0.17 0.21 0.23 0.42 0.21 0.19 0.28
500 0.26 0.30 0.39 0.24 0.22 0.24 0.20 0.19 0.47 0.24 0.20 0.24
750 0.19 0.15 0.32 0.26 0.21 0.17 0.15 0.14 0.21 0.16 0.19 0.14

1,000 0.19 0.18 0.32 0.23 0.23 0.19 0.10 0.09 0.22 0.20 0.19 0.10
1,500 0.08 0.09 0.17 0.17 0.22 0.20 0.07 0.07 0.26 0.15 0.20 0.21
2,000 0.09 0.09 0.17 0.18 0.22 0.30 0.08 0.09 0.22 0.09 0.18 0.22
3,000 0.07 0.09 0.17 0.17 0.23 0.20 0.08 0.09 0.17 0.09 0.21 0.19
4,000 0.06 0.06 0.24 0.15 0.23 0.31 0.06 0.07 0.20 0.07 0.21 0.28
5,000 0.07 0.06 0.27 0.13 0.24 0.32 0.04 0.05 0.24 0.07 0.19 0.29

ME (corr.-inter) RMSE (corr.-inter) ME (corr.-intra) RMSE (corr.-intra)
Obs. E F G E F G E F G E F G
100 0.91 1.62 1.34 1.30 1.67 1.37 0.10 0.10 0.10 0.10 0.10 0.10
200 1.65 1.58 1.21 1.65 1.59 1.35 0.10 0.10 0.10 0.10 0.10 0.10
300 -0.13 0.08 -0.31 0.62 0.62 0.31 0.09 0.09 0.09 0.09 0.09 0.09
400 0.58 0.67 1.28 1.00 0.96 1.30 0.05 0.05 0.05 0.05 0.05 0.05
500 -0.19 -0.37 -0.01 0.39 0.39 0.52 0.04 0.04 0.04 0.04 0.04 0.04
750 -0.08 -0.15 0.18 0.59 0.59 0.59 0.01 0.01 0.01 0.01 0.01 0.01

1,000 0.45 0.40 0.74 0.91 0.95 1.05 0.01 0.01 0.01 0.01 0.01 0.01
1,500 0.08 0.07 0.08 0.67 0.74 0.78 -0.01 -0.01 -0.01 0.01 0.01 0.01
2,000 -0.19 -0.23 -0.14 0.32 0.33 0.35 -0.02 -0.02 -0.02 0.02 0.02 0.02
3,000 -0.17 -0.12 -0.22 0.31 0.25 0.34 -0.01 -0.01 -0.01 0.01 0.01 0.01
4,000 -0.11 -0.12 0.02 0.25 0.26 0.20 0.00 0.00 0.00 0.00 0.00 0.00
5,000 0.09 0.03 -0.02 0.51 0.52 0.12 0.00 0.00 0.00 0.00 0.00 0.00



Table 12: Estimation results for case study 4: part II

Runs converged Mean adj. ρ2

Obs. E F G E F G
100 2 9 3 0.41 0.36 0.09
200 7 10 4 0.30 0.31 0.05
300 9 10 2 0.28 0.28 0.08
400 9 10 5 0.30 0.30 0.11
500 10 10 8 0.30 0.31 0.11
750 10 10 6 0.29 0.29 0.13

1,000 9 10 4 0.29 0.29 0.13
1,500 10 10 4 0.29 0.29 0.12
2,000 10 10 5 0.29 0.29 0.13
3,000 10 10 4 0.29 0.29 0.13
4,000 10 10 6 0.29 0.29 0.14
5,000 10 10 8 0.30 0.30 0.15

Mean est. time (s)
Obs. E F G
100 535 3 3
200 1,032 5 8
300 1,543 8 15
400 1,958 11 16
500 2,591 12 19
750 3,797 20 32

1,000 4,547 27 76
1,500 7,703 42 66
2,000 11,256 57 190
3,000 15,207 89 204
4,000 20,163 111 326
5,000 24,964 146 301
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